全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2019 

Quantile Regression with Telematics Information to Assess the Risk of Driving above the Posted Speed Limit

DOI: https://doi.org/10.3390/risks7030080

Full-Text   Cite this paper   Add to My Lib

Abstract:

We analyzed real telematics information for a sample of drivers with usage-based insurance policies. We examined the statistical distribution of distance driven above the posted speed limit—which presents a strong positive asymmetry—using quantile regression models. We found that, at different percentile levels, the distance driven at speeds above the posted limit depends on total distance driven and, more generally, on factors such as the percentage of urban and nighttime driving and on the driver’s gender. However, the impact of these covariates differs according to the percentile level. We stress the importance of understanding telematics information, which should not be limited to simply characterizing average drivers, but can be useful for signaling dangerous driving by predicting quantiles associated with specific driver characteristics. We conclude that the risk of driving for long distances above the speed limit is heterogeneous and, moreover, we show that prevention campaigns should target primarily male non-urban drivers, especially if they present a high percentage of nighttime driving. View Full-Tex

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133