全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2019 

Fault Classification Decision Fusion System Based on Combination Weights and an Improved Voting Method

DOI: https://doi.org/10.3390/pr7110783

Full-Text   Cite this paper   Add to My Lib

Abstract:

It is difficult to correctly classify all faults by using only one classifier, and the performance of most classifiers varies under different conditions. In view of this, a new decision fusion system is proposed to solve the problem of fault classification. The proposed decision fusion system is innovative in two aspects: the use of combined weights and a new improved voting method. The combined weights integrate the subjective and objective weights, where the analytic hierarchy process and entropy weight-technique for order performance by similarity to ideal solution are used to determine the subjective and objective weights of different base classifiers under multiple performance evaluation indicators. Moreover, a new improved voting method based on the concept of classifier validity is proposed to increase the accuracy of the decision system. Finally, the method is validated by the Tennessee Eastman benchmark process, and the classification accuracy of the new method is shown to be improved by more than 5.06% compared to the best base classifier. View Full-Tex

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133