全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2019 

Geometric Models for Lie–Hamilton Systems on ?2

DOI: https://doi.org/10.3390/math7111053

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper provides a geometric description for Lie–Hamilton systems on R 2 with locally transitive Vessiot–Guldberg Lie algebras through two types of geometric models. The first one is the restriction of a class of Lie–Hamilton systems on the dual of a Lie algebra to even-dimensional symplectic leaves relative to the Kirillov-Kostant-Souriau bracket. The second is a projection onto a quotient space of an automorphic Lie–Hamilton system relative to a naturally defined Poisson structure or, more generally, an automorphic Lie system with a compatible bivector field. These models give a natural framework for the analysis of Lie–Hamilton systems on R 2 while retrieving known results in a natural manner. Our methods may be extended to study Lie–Hamilton systems on higher-dimensional manifolds and provide new approaches to Lie systems admitting compatible geometric structures. View Full-Tex

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133