全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 

Palladium Nanoparticles-Based Fluorescence Resonance Energy Transfer Aptasensor for Highly Sensitive Detection of Aflatoxin M1 in Milk

DOI: 10.3390/toxins9100318

Keywords: aflatoxin M1, palladium nanoparticles, aptasensor, fluorescence resonance energy transfer

Full-Text   Cite this paper   Add to My Lib

Abstract:

A highly sensitive aptasensor for aflatoxin M1 (AFM1) detection was constructed based on fluorescence resonance energy transfer (FRET) between 5-carboxyfluorescein (FAM) and palladium nanoparticles (PdNPs). PdNPs (33 nm) were synthesized through a seed-mediated growth method and exhibited broad and strong absorption in the whole ultraviolet-visible (UV-Vis) range. The strong coordination interaction between nitrogen functional groups of the AFM1 aptamer and PdNPs brought FAM and PdNPs in close proximity, which resulted in the fluorescence quenching of FAM to a maximum extent of 95%. The non-specific fluorescence quenching caused by PdNPs towards fluorescein was negligible. After the introduction of AFM1 into the FAM-AFM1 aptamer-PdNPs FRET system, the AFM1 aptamer preferentially combined with AFM1 accompanied by conformational change, which greatly weakened the coordination interaction between the AFM1 aptamer and PdNPs. Thus, fluorescence recovery of FAM was observed and a linear relationship between the fluorescence recovery and the concentration of AFM1 was obtained in the range of 5–150 pg/mL in aqueous buffer with the detection limit of 1.5 pg/mL. AFM1 detection was also realized in milk samples with a linear detection range from 6 pg/mL to 150 pg/mL. The highly sensitive FRET aptasensor with simple configuration shows promising prospect in detecting a variety of food contaminants

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133