全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Recent Advances in Electrochemical Glycobiosensing

DOI: 10.4061/2011/825790

Full-Text   Cite this paper   Add to My Lib

Abstract:

Biosensors based on electrochemical transduction mechanisms have recently made advances into the field of glycan analysis. These glyco-biosensors offer simple, rapid, sensitive, and economical approaches to the measurement need for rapid glycan analysis for biomarker detection, cancer and disease diagnostics, and bioprocess monitoring of therapeutic glycoproteins. Although the prevalent methods of glycan analysis (high-performance liquid chromatography, mass spectrometry, and nuclear magnetic resonance spectroscopy) provide detailed identification and structural analysis of glycan species, there are significantly few low-cost, rapid glycan assays available for diagnostic and screening applications. Here we review instances in which glyco-biosensors have been used for glycan analysis using a variety of electrochemical transduction mechanisms (e.g., amperometric, potentiometric, impedimetric, and voltammetric), selective binding agents (e.g., lectins and antibodies), and redox species (e.g., enzyme substrates, inorganic, and nanomaterial). 1. Introduction Glycosylation is the process by which a glycan (i.e., saccharide or carbohydrate) is added to a nonglycan moiety (e.g., protein) and is the most common posttranslational modification of proteins [1]. The glycoforms (i.e., diverse molecular forms of a glycoprotein, resulting from variable glycan structure and/or glycan attachment site occupancy) of a protein profoundly influence structure, function, stability, and serum half-life, which in turn affects many biological processes. Glycosylation plays a role in cell-cell interactions and has been linked to several disease states, including infection, genetic disorders, and cancer [2–4]. In the case of cancer, abnormal protein glycosylation has been linked to early tumor cell growth and proliferation; therefore, glycan-based biomarkers have been sought for early detection [3, 5–9]. Protein glycans are classified as either N-linked or O-linked (Figure 1). N-linked glycans are attached to the peptide at an Asn-X-Ser/Thr sequence site, where X ≠ proline, and share a common branched trimannosyl core. There are three N-glycan subtypes: high-mannose N-glycans which have mannose residues attached to the mannose core, complex N-glycans that do not contain terminal mannose residues but have complex branching, and hybrid N-glycans which contain both mannose residues and complex branching. O-linked glycans tend to be less complex (i.e., linear), they do not share a common single core, and they attach through serine or threonine residues (GalNAcα1-O-Ser/Thr). The seven

References

[1]  A. Varki, et al., Ed., Essentials of Glycobiology, Cold Spring Harbor Press, Cold Spring Harbor, NY, USA, 1999.
[2]  D. H. Dube and C. R. Bertozzi, “Glycans in cancer and inflammation—potential for therapeutics and diagnostics,” Nature Reviews Drug Discovery, vol. 4, no. 6, pp. 477–488, 2005.
[3]  N. H. Packer, C. W. von der Lieth, K. F. Aoki-Kinoshita et al., “Frontiers in glycomics: bioinformatics and biomarkers in disease: an NIH White Paper prepared from discussions by the focus groups at a workshop on the NIH campus, Bethesda MD (September 11–13, 2006),” Proteomics, vol. 8, no. 1, pp. 8–20, 2008.
[4]  H. J. An, S. R. Kronewitter, M. L. A. de Leoz, and C. B. Lebrilla, “Glycomics and disease markers,” Current Opinion in Chemical Biology, vol. 13, no. 5-6, pp. 601–607, 2009.
[5]  T. Patwa, C. Li, D. M. Simeone, et al., “Glycoprotein analysis using protein microarrays and mass spectrometry,” Mass Spectrometry Reviews, vol. 29, no. 5, pp. 830–844, 2010.
[6]  P. M. Drake, W. Cho, B. Li et al., “Sweetening the pot: adding glycosylation to the biomarker discovery equation,” Clinical Chemistry, vol. 56, no. 2, pp. 223–236, 2010.
[7]  Y. Qiu, T. H. Patwa, LI. Xu et al., “Plasma glycoprotein profiling for colorectal cancer biomarker identification by lectin glycoarray and lectin blot,” Journal of Proteome Research, vol. 7, no. 4, pp. 1693–1703, 2008.
[8]  K. Ueda, T. Katagiri, T. Shimada et al., “Comparative profiling of serum glycoproteome by sequential purification of glycoproteins and 2-nitrobenzenesulfenyl (NBS) stable isotope labeling: a new approach for the novel biomarker discovery for cancer,” Journal of Proteome Research, vol. 6, no. 9, pp. 3475–3483, 2007.
[9]  H. J. An, S. Miyamoto, K. S. Lancaster et al., “Profiling of glycans in serum for the discovery of potential biomarkers for ovarian cancer,” Journal of Proteome Research, vol. 5, no. 7, pp. 1626–1635, 2006.
[10]  P. M. Rudd, T. Elliott, P. Cresswell, I. A. Wilson, and R. A. Dwek, “Glycosylation and the immune system,” Science, vol. 291, no. 5512, pp. 2370–2376, 2001.
[11]  Y. van Kooyk and G. A. Rabinovich, “Protein-glycan interactions in the control of innate and adaptive immune responses,” Nature Immunology, vol. 9, no. 6, pp. 593–601, 2008.
[12]  G. Walsh and R. Jefferis, “Post-translational modifications in the context of therapeutic proteins,” Nature Biotechnology, vol. 24, no. 10, pp. 1241–1252, 2006.
[13]  A. J. Chirino and A. Mire-Sluis, “Characteristics biological products and assessing comparability following manufacturing changes,” Nature Biotechnology, vol. 22, no. 11, pp. 1383–1391, 2004.
[14]  R. Jefferis, “Glycosylation of recombinant antibody therapeutics,” Biotechnology Progress, vol. 21, no. 1, pp. 11–16, 2005.
[15]  S. A. Brooks, “Strategies for analysis of the glycosylation of proteins: current status and future perspectives,” Molecular Biotechnology, vol. 43, no. 1, pp. 76–88, 2009.
[16]  M. Butler, “Optimisation of the cellular metabolism of glycosylation for recombinant proteins produced by mammalian cell systems,” Cytotechnology, vol. 50, no. 1-3, pp. 57–76, 2006.
[17]  N. Jenkins, R. B. Parekh, and D. C. James, “Getting the glycosylation right: implications for the biotechnology industry,” Nature Biotechnology, vol. 14, no. 8, pp. 975–981, 1996.
[18]  L. Ding, W. Cheng, X. Wang et al., “A label-free strategy for facile electrochemical analysis of dynamic glycan expression on living cells,” Chemical Communications, no. 46, pp. 7161–7163, 2009.
[19]  A. Dell and H. R. Morris, “Glycoprotein structure determination by mass spectrometry,” Science, vol. 291, no. 5512, pp. 2351–2356, 2001.
[20]  N. Kawasaki, M. Ohta, S. Hyuga, O. Hashimoto, and T. Hayakawa, “Analysis of carbohydrate heterogeneity in a glycoprotein using liquid chromatography/mass spectrometry and liquid chromatography with tandem mass spectrometry,” Analytical Biochemistry, vol. 269, no. 2, pp. 297–303, 1999.
[21]  A. Lim, A. Reed-Bogan, and B. J. Harmon, “Glycosylation profiling of a therapeutic recombinant monoclonal antibody with two N-linked glycosylation sites using liquid chromatography coupled to a hybrid quadrupole time-of-flight mass spectrometer,” Analytical Biochemistry, vol. 375, no. 2, pp. 163–172, 2008.
[22]  A. Zamfir and J. Peter-Katalini?, “Capillary electrophoresis-mass spectrometry for glycoscreening in biomedical research,” Electrophoresis, vol. 25, no. 13, pp. 1949–1963, 2004.
[23]  B. Meyer and T. Peters, “NMR spectroscopy techniques for screening and identifying ligand binding to protein receptors,” Angewandte Chemie International Edition, vol. 42, no. 8, pp. 864–890, 2003.
[24]  H. J. Gabius, H. C. Siebert, S. André, J. Jiménez-Barbero, and H. Rüdiger, “Chemical biology of the sugar code,” ChemBioChem, vol. 5, no. 6, pp. 740–764, 2004.
[25]  M. R. Wormald, A. J. Petrescu, Y. L. Pao, A. Glithero, T. Elliott, and R. A. Dwek, “Conformational studies of oligosaccharides and glycopeptides: complementarity of NMR, X-ray crystallography, and molecular modelling,” Chemical Reviews, vol. 102, no. 2, pp. 371–386, 2002.
[26]  J. ?. Duus, C. H. Gotfredsen, and K. Bock, “Carbohydrate structural determination by NMR spectroscopy: modern methods and limitations,” Chemical Reviews, vol. 100, no. 12, pp. 4589–4614, 2000.
[27]  N. Blow, “Glycobiology: a spoonful of sugar,” Nature, vol. 457, no. 7229, pp. 617–620, 2009.
[28]  S. Kamoda and K. Kakehi, “Capillary electrophoresis for the analysis of glycoprotein pharmaceuticals,” Electrophoresis, vol. 27, no. 12, pp. 2495–2504, 2006.
[29]  P. M. Rudd, H. C. Joao, E. Coghill et al., “Glycoforms modify the dynamic stability and functional activity of an enzyme,” Biochemistry, vol. 33, no. 1, pp. 17–22, 1994.
[30]  Y. Wada, A. Dell, S. M. Haslam et al., “Comparison of methods for profiling O-glycosylation: human proteome organisation human disease glycomics/proteome initiative multi-institutional study of IgA1,” Molecular & Cellular Proteomics, vol. 9, no. 4, pp. 719–727, 2010.
[31]  Y. Wada, P. Azadi, C. E. Costello et al., “Comparison of the methods for profiling glycoprotein glycans—HUPO human disease glycomics/proteome initiative multi-institutional study,” Glycobiology, vol. 17, no. 4, pp. 411–422, 2007.
[32]  S. Thobhani, C. T. Yuen, M. J. A. Bailey, and C. Jones, “Identification and quantification of N -linked oligosaccharides released from glycoproteins: an inter-laboratory study,” Glycobiology, vol. 19, no. 3, pp. 201–211, 2009.
[33]  A. Beck, E. Wagner-Rousset, M. C. Bussat et al., “Trends in glycosylation, glycoanalysis and glycoengineering of therapeutic antibodies and Fc-fusion proteins,” Current Pharmaceutical Biotechnology, vol. 9, no. 6, pp. 482–501, 2008.
[34]  S. Cunningham, J. Q. Gerlach, M. Kane, and L. Joshi, “Glyco-biosensors: recent advances and applications for the detection of free and bound carbohydrates,” Analyst, vol. 135, no. 10, pp. 2471–2480, 2010.
[35]  J. Hirabayashi, “Lectin-based structural glycomics: glycoproteomics and glycan profiling,” Glycoconjugate Journal, vol. 21, no. 1-2, pp. 35–40, 2004.
[36]  L. C. Clark and C. Lyons, “Electrode systems for continuous monitoring in cardiovascular surgery,” Annals of the New York Academy of Sciences, vol. 102, pp. 29–45, 1962.
[37]  J. Wang, “Electrochemical glucose biosensors,” Chemical Reviews, vol. 108, no. 2, pp. 814–825, 2008.
[38]  S. J. Updike and G. P. Hicks, “The enzyme electrode,” Nature, vol. 214, no. 5092, pp. 986–988, 1967.
[39]  J. Wang, “Glucose biosensors: 40 years of advances and challenges,” Electroanalysis, vol. 13, no. 12, pp. 983–988, 2001.
[40]  J. Q. Gerlach, S. Cunningham, M. Kane, and L. Joshi, “Glycobiomimics and glycobiosensors,” Biochemical Society Transactions, vol. 38, no. 5, pp. 1333–1336, 2010.
[41]  R. Jelinek and S. Kolusheva, “Carbohydrate biosensors,” Chemical Reviews, vol. 104, no. 12, pp. 5987–6015, 2004.
[42]  R. P. Baldwin, “Electrochemical determination of carbohydrates: enzyme electrodes and amperometric detection in liquid chromatography and capillary electrophoresis,” Journal of Pharmaceutical and Biomedical Analysis, vol. 19, no. 1-2, pp. 69–81, 1999.
[43]  T. R. I. Cataldi, C. Campa, and G. E. De Benedetto, “Carbohydrate analysis by high-performance anion-exchange chromatography with pulsed amperometric detection: the potential is still growing,” Fresenius' Journal of Analytical Chemistry, vol. 368, no. 8, pp. 739–758, 2000.
[44]  P. L. Weber and S. M. Lunte, “Capillary electrophoresis with pulsed amperometric detection of carbohydrates and glycopeptides,” Electrophoresis, vol. 17, no. 2, pp. 302–309, 1996.
[45]  M. R. Hardy and R. R. Townsend, “Separation of positional isomers of oligosaccharides and glycopeptides by high-performance anion-exchange chromatography with pulsed amperometric detection,” Proceedings of the National Academy of Sciences of the United States of America, vol. 85, no. 10, pp. 3289–3293, 1988.
[46]  M. W. Spellman, “Carbohydrate characterization of recombinant glycoproteins of pharmaceutical interest,” Analytical Chemistry, vol. 62, no. 17, pp. 1714–1722, 1990.
[47]  R. R. Townsend, “Analysis of glycoconjugates using high-pH anion-exchange chromatography,” in Carbohydrate Analysis, Z. El Rassi, Ed., pp. 181–209, Elsevier, Amsterdam, The Netherlands, 1995.
[48]  W. Cheng, L. Ding, S. Ding, Y. Yin, and H. Ju, “A simple electrochemical cytosensor array for dynamic analysis of carcinoma cell surface glycans,” Angewandte Chemie International Edition, vol. 48, no. 35, pp. 6465–6468, 2009.
[49]  Z. Shao, Y. Li, Q. Yang, J. Wang, and G. Li, “A novel electrochemical method to detect cell surface carbohydrates and target cells,” Analytical and Bioanalytical Chemistry, vol. 398, no. 7-8, pp. 2963–2967, 2010.
[50]  Y. Xue, L. Ding, J. Lei, and H. Ju, “A simple electrochemical lectin-probe for in situ homogeneous cytosensing and facile evaluation of cell surface glycan,” Biosensors & Bioelectronics, vol. 26, no. 1, pp. 169–174, 2010.
[51]  X. Zhang, Y. Teng, Y. Fu et al., “Lectin-based biosensor strategy for electrochemical assay of glycan expression on living cancer cells,” Analytical Chemistry, vol. 82, no. 22, pp. 9455–9460, 2010.
[52]  W. Cheng, L. Ding, J. Lei, S. Ding, and H. Ju, “Effective cell capture with tetrapeptide-functionalized carbon nanotubes and dual signal amplification for cytosensing and evaluation of cell surface carbohydrate,” Analytical Chemistry, vol. 80, no. 10, pp. 3867–3872, 2008.
[53]  L. Ding, Q. Ji, R. Qian, W. Cheng, and J. Huangxian, “Lectin-based nanoprobes functionalized with enzyme for highly sensitive electrochemical monitoring of dynamic carbohydrate expression on living cells,” Analytical Chemistry, vol. 82, no. 4, pp. 1292–1298, 2010.
[54]  J. J. Zhang, F. F. Cheng, T. T. Zheng, and J. J. Zhu, “Design and implementation of electrochemical cytosensor for evaluation of cell surface carbohydrate and glycoprotein,” Analytical Chemistry, vol. 82, no. 9, pp. 3547–3555, 2010.
[55]  D. Tang, B. Su, J. Tang, J. Ren, and G. Chen, “Nanoparticle-based sandwich electrochemical immunoassay for carbohydrate antigen 125 with signal enhancement using enzyme-coated nanometer-sized enzyme-doped silica beads,” Analytical Chemistry, vol. 82, no. 4, pp. 1527–1534, 2010.
[56]  F. Xi, J. Gao, J. Wang, and Z. Wang, “Discrimination and detection of bacteria with a label-free impedimetric biosensor based on self-assembled lectin monolayer,” Journal of Electroanalytical Chemistry, vol. 656, no. 1-2, pp. 252–257, 2011.
[57]  V. J. Nagaraj, S. Aithal, S. Eaton, M. Bothara, P. Wiktor, and S. Prasad, “NanoMonitor: a miniature electronic biosensor for glycan biomarker detection,” Nanomedicine, vol. 5, no. 3, pp. 369–378, 2010.
[58]  J. T. La Belle, J. Q. Gerlach, S. Svarovsky, and L. Joshi, “Label-free impedimetric detection of glycan-lectin interactions,” Analytical Chemistry, vol. 79, no. 18, pp. 6959–6964, 2007.
[59]  M. D. L. Oliveira, M. T. S. Correia, and F. B. Diniz, “A novel approach to classify serum glycoproteins from patients infected by dengue using electrochemical impedance spectroscopy analysis,” Synthetic Metals, vol. 159, no. 21-22, pp. 2162–2164, 2009.
[60]  M. D. L. Oliveira, M. T. S. Correia, and F. B. Diniz, “Concanavalin A and polyvinyl butyral use as a potential dengue electrochemical biosensor,” Biosensors & Bioelectronics, vol. 25, no. 4, pp. 728–732, 2009.
[61]  M. D. L. Oliveira, M. T. S. Correia, L. C. B. B. Coelho, and F. B. Diniz, “Electrochemical evaluation of lectin-sugar interaction on gold electrode modified with colloidal gold and polyvinyl butyral,” Colloids and Surfaces B, vol. 66, no. 1, pp. 13–19, 2008.
[62]  M. D. L. Oliveira, M. L. Nogueira, M. T. S. Correia, L. C. B. B. Coelho, and C. A. S. Andrade, “Detection of dengue virus serotypes on the surface of gold electrode based on Cratylia mollis lectin affinity,” Sensors and Actuators B, vol. 155, no. 2, pp. 789–795, 2011.
[63]  Y. Wan, D. Zhang, and B. Hou, “Monitoring microbial populations of sulfate-reducing bacteria using an impedimetric immunosensor based on agglutination assay,” Talanta, vol. 80, no. 1, pp. 218–223, 2009.
[64]  M. Gamella, S. Campuzano, C. Parrado, A. J. Reviejo, and J. M. Pingarrón, “Microorganisms recognition and quantification by lectin adsorptive affinity impedance,” Talanta, vol. 78, no. 4-5, pp. 1303–1309, 2009.
[65]  A. Matumoto, N. Sato, H. Cabral, K. Kataoka, and Y. Miyahara, “Label free potentiometric sialic acid detection applicable to living cell diagnosis,” in IEEE Sensors Conference (SENSORS '09), pp. 1885–1888, October 2009.
[66]  X. H. Fu, “Poly(amidoamine) dendrimer-functionalized magnetic beads as an immunosensing probe for electrochemical immunoassay for carbohydrate antigen-125 in human serum,” Analytical Letters, vol. 43, no. 3, pp. 455–465, 2010.
[67]  Z. Dai, A. N. Kawde, Y. Xiang et al., “Nanoparticle-based sensing of glycan-lectin interactions,” Journal of the American Chemical Society, vol. 128, no. 31, pp. 10018–10019, 2006.
[68]  B. Gu, C. Xu, C. Yang, S. Liu, and M. Wang, “ZnO quantum dot labeled immunosensor for carbohydrate antigen 19-9,” Biosensors & Bioelectronics, vol. 26, no. 5, pp. 2720–2723, 2011.
[69]  D. R. Thevenot, K. Toth, R. A. Durst, et al., “Electrochemical biosensors: recommended definitions and classification—(technical report),” Pure and Applied Chemistry, vol. 71, no. 12, pp. 2333–2348, 1999.
[70]  D. R. Thévenot, K. Toth, R. A. Durst, and G. S. Wilson, “Electrochemical biosensors: recommended definitions and classification,” Biosensors & Bioelectronics, vol. 16, no. 1-2, pp. 121–131, 2001.
[71]  E. H. Yoo and S. Y. Lee, “Glucose biosensors: an overview of use in clinical practice,” Sensors, vol. 10, no. 5, pp. 4558–4576, 2010.
[72]  A. Heller and B. Feldman, “Electrochemical glucose sensors and their applications in diabetes management,” Chemical Reviews, vol. 108, no. 7, pp. 2482–2505, 2008.
[73]  G. S. Wilson and Y. Hu, “Enzyme-based biosensors for in vivo measurements,” Chemical Reviews, vol. 100, no. 7, pp. 2693–2704, 2000.
[74]  N. S. Oliver, C. Toumazou, A. E. G. Cass, and D. G. Johnston, “Glucose sensors: a review of current and emerging technology,” Diabetic Medicine, vol. 26, no. 3, pp. 197–210, 2009.
[75]  J. D. Newman and A. P. F. Turner, “Home blood glucose biosensors: a commercial perspective,” Biosensors & Bioelectronics, vol. 20, no. 12, pp. 2435–2453, 2005.
[76]  A. M. Wu, “Carbohydrate structural units in glycoproteins and polysaccharides as important ligands for Gal and GalNAc reactive lectins,” Journal of Biomedical Science, vol. 10, no. 6, pp. 676–688, 2003.
[77]  A. M. Wu, E. Lisowska, M. Duk, and Z. Yang, “Lectins as tools in glycoconjugate research,” Glycoconjugate Journal, vol. 26, no. 8, pp. 899–913, 2009.
[78]  D. Mislovi?ová, P. Gemeiner, A. Kozarova, and T. Ko?ár, “Lectinomics I. Relevance of exogenous plant lectins in biomedical diagnostics,” Biologia, vol. 64, no. 1, pp. 1–19, 2009.
[79]  P. Gemeiner, D. Mislovi?ová, J. Tká? et al., “Lectinomics. II. A highway to biomedical/clinical diagnostics,” Biotechnology Advances, vol. 27, no. 1, pp. 1–15, 2009.
[80]  S. Szunerits, J. Niedziolka-Jonsson, R. Boukherroub, P. Woisel, J.-S. Baumann, and A. Siriwardena, “Label-free detection of lectins on carbohydrate-modified boron-doped diamond surfaces,” Analytical Chemistry, vol. 82, no. 19, pp. 8203–8210, 2010.
[81]  L. Tan, Q. Xie, and S. Yao, “Electrochemical piezoelectric quartz crystal impedance study on the interaction between concanavalin A and glycogen at Au electrodes,” Bioelectrochemistry, vol. 70, no. 2, pp. 348–355, 2007.
[82]  R. R. Ueta and F. B. Diniz, “Adsorption of concanavalin A and lentil lectin on platinum electrodes followed by electrochemical impedance spectroscopy: effect of protein state,” Colloids and Surfaces B, vol. 61, no. 2, pp. 244–249, 2008.
[83]  Y. Xue, L. Ding, J. Lei, F. Yan, and H. Ju, “In situ electrochemical imaging of membrane glycan expression on micropatterned adherent single cells,” Analytical Chemistry, vol. 82, no. 17, pp. 7112–7118, 2010.
[84]  L. Ding, W. Cheng, X. Wang, S. Ding, and H. Ju, “Carbohydrate monolayer strategy for electrochemical assay of cell surface carbohydrate,” Journal of the American Chemical Society, vol. 130, no. 23, pp. 7224–7225, 2008.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133