全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 

Predicting grain yield using canopy hyperspectral reflectance in wheat breeding data

DOI: 10.1186/s13007-016-0154-2

Keywords: Spectral data, Vegetation indexes, Prediction accuracy, Genome selection, Bayes B, Spline regression, Fourier regression, Wheat

Full-Text   Cite this paper   Add to My Lib

Abstract:

Modern agriculture uses hyperspectral cameras to obtain hundreds of reflectance data measured at discrete narrow bands to cover the whole visible light spectrum and part of the infrared and ultraviolet light spectra, depending on the camera. This information is used to construct vegetation indices (VI) (e.g., green normalized difference vegetation index or GNDVI, simple ratio or SRa, etc.) which are used for the prediction of primary traits (e.g., biomass). However, these indices only use some bands and are cultivar-specific; therefore they lose considerable information and are not robust for all cultivars

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133