Positively and negatively charged polyelectrolytes, namely, Poly(diallyldimethylammonium chloride) and Poly(styrene sulfonate), respectively, were employed to disperse and deploy negatively charged quantum dots on an otherwise passive metamaterial structure with a resonant frequency of 0.62 THz, by employing a layer-by-layer, self-assembly scheme. Upon exposure to a UV source with a wavelength of 365 nm the amplitude modulation was observed to increase with increases in the number of deposited bi-layers, until a modulation maximum of 2.68% was recorded enabling an all-optical, dynamically reconfigurable metamaterial geometry. Furthermore, amplitude modulation was subsequently observed to decrease with further increases in the number of layers employed due to quenching and shadowing effects. The experimental observations reported herein will enable the utilization of all-optical reconfigurable THz devices for communication and data transmission applications.
References
[1]
Semenova, V. and Bespalov, V. (2015) Terahertz Technologies for Telecommunications. Photonics, 51, 126-141.
[2]
Dhillon, S.S., et al. (2017) The 2017 Terahertz Science and Technology Roadmap. Journal of Physics D: Applied Physics, 50, Article ID: 043001.
[3]
Ajito, K. and Ueno, Y. (2011) THz Chemical Imaging for Biological Applications. IEEE Transactions on Terahertz Science and Technology, 1, 293-300. https://doi.org/10.1109/TTHZ.2011.2159562
[4]
Karpowicz, N., et al. (2005) Compact Continuous-Wave Subterahertz System for Inspection Applications. Applied Physics Letters, 86, Article ID: 054105. https://doi.org/10.1063/1.1856701
[5]
Kumar, C.S.S.R. (2013) UV-VIS and Photoluminescence Spectroscopy for Nanomaterials Characterization.
[6]
Wietzke, S., Jördens, C., Krumbholz, N., Baudrit, B., Bastian, M. and Koch, M. (2007) Terahertz Imaging: A New Non-Destructive Technique for the Quality Control of Plastic Weld Joints. Journal of the European Optical Society, 2, 2-6. https://doi.org/10.2971/jeos.2007.07013
[7]
Pickwell, E. and Wallace, V.P. (2006) Biomedical Applications of Terahertz Technology. Journal of Physics D: Applied Physics, 39, R301. https://doi.org/10.1088/0022-3727/39/17/R01
[8]
Gomez-Sepulveda, A.M., et al. (2017) History of Mexican Easel Paintings from an Altarpiece Revealed by Non-Invasive Terahertz Time-Domain Imaging. Journal of Infrared, Millimeter, and Terahertz Waves, 38, 403-412. https://doi.org/10.1007/s10762-016-0346-x
[9]
Nagatsuma, T., Ducournau, G. and Renaud, C.C. (2016) Advances in Terahertz Communications Accelerated by Photonics. Nature Photonics, 10, 371-379. https://doi.org/10.1038/nphoton.2016.65
[10]
Lin, C. and Li, G.Y.L. (2016) Terahertz Communications: An Array-of-Subarrays Solution. IEEE Communications Magazine, 54, 124-131. https://doi.org/10.1109/MCOM.2016.1600306CM
[11]
Oshima, N., Hashimoto, K., Suzuki, S. and Asada, M. (2017) Terahertz Wireless Data Transmission with Frequency and Polarization Division Multiplexing Using Resonant-Tunneling-Diode Oscillators. IEEE Transactions on Terahertz Science and Technology, 7, 593-598. https://doi.org/10.1109/TTHZ.2017.2720470
[12]
Leisawitz, D.T., et al. (2000) Scientific Motivation and Technology Requirements for the SPIRIT and SPECS Far-Infrared/Submillimeter Space Interferometers. Proceedings UV, Optical, and IR Space Telescopes and Instruments, Volume 4013, 36-46. https://doi.org/10.1117/12.393957
[13]
Chamorro-Posada, P., et al. (2016) THz TDS Study of Several sp2 Carbon Materials: Graphite, Needle Coke and Graphene Oxides. Carbon N. Y., 98, 484-490. https://doi.org/10.1016/j.carbon.2015.11.020
[14]
Leyman, R.R., et al. (2016) Quantum Dot Materials for Terahertz Generation Applications. Laser & Photonics Reviews, 10, 772-779. https://doi.org/10.1002/lpor.201500176
[15]
Mandal, P.K. and Chikan, V. (2007) Plasmon-Phonon Coupling in Charged n-Type CdSe Quantum Dots: A THz Time-Domain Spectroscopic Study. Nano Letters, 7, 2521-2528. https://doi.org/10.1021/nl070853q
[16]
Phillips, T.G. and Keene, J. (1992) Submillimeter Astronomy (Heterodyne Spectroscopy). Proceedings of the IEEE, 80, 1662-1678. https://doi.org/10.1109/5.175248
[17]
Nasa, S. and Purohit, S.P. (2020) Linear and Third Order Nonlinear Optical Properties of GaAs Quantum Dot in Terahertz Region. Physica E: Low-Dimensional Systems and Nanostructures, 118, Article ID: 113913. https://doi.org/10.1016/j.physe.2019.113913
[18]
Costa, F., Monorchio, A. and Manara, G. (2010) Analysis and Design of Ultra Thin Electromagnetic Absorbers Comprising Resistively Loaded High Impedance Surfaces. IEEE Transactions on Antennas and Propagation, 58, 1551-1558. https://doi.org/10.1109/TAP.2010.2044329
[19]
Zarei, S., Mataji-Kojouri, A., Shahabadi, M. and Mohajerzadeh, S. (2018) Tunable Terahertz Filter Composed of an Array of Subwavelength Metallic Ring Apertures. Optik (Stuttg), 164, 355-361. https://doi.org/10.1016/j.ijleo.2018.03.015
[20]
Baena, J.D., et al. (2005) Equivalent-Circuit Models for Split-Ring Resonators and Complementary Split-Ring Resonators Coupled to Planar Transmission Lines. IEEE Transactions on Microwave Theory and Techniques, 53, 1451-1460. https://doi.org/10.1109/TMTT.2005.845211
[21]
Ye, W., et al. (2016) Spin and Wavelength Multiplexed Nonlinear Metasurface Holography. Nature Communications, 7, Article No. 11930. https://doi.org/10.1038/ncomms11930
[22]
Vázquez-Colón, C.D., Zepeda-Galvéz, J.A. and Ayón, A.A. (2019) Reconfigurable X-Shaped THz Metamaterials Employing Quantum Dots. Symposium on Design, Test, Integration & Packaging of MEMS and MOEMS, Paris, 12-15 May 2019, 1-2. https://doi.org/10.1109/DTIP.2019.8752863
[23]
Lee, S., et al. (2012) Reversibly Stretchable and Tunable Terahertz Metamaterials with Wrinkled Layouts. Advanced Materials, 24, 3491-3497. https://doi.org/10.1002/adma.201200419
Han, Z., Kohno, K., Fujita, H., Hirakawa, K. and Toshiyoshi, H. (2015) Tunable Terahertz Filter and Modulator Based on Electrostatic MEMS Reconfigurable SRR Array. IEEE Journal of Selected Topics in Quantum Electronics, 21, 114-122. https://doi.org/10.1109/JSTQE.2014.2378591
[26]
Zhu, W.M., et al. (2011) Polarization Dependent State to Polarization Independent State Change in THz Metamaterials. Applied Physics Letters, 99, 10-13. https://doi.org/10.1063/1.3664131
[27]
Zhao, Y., et al. (2018) Dynamic Photoinduced Controlling of the Large Phase Shift of Terahertz Waves via Vanadium Dioxide Coupling Nanostructures. ACS Photonics, 5, 3040-3050. https://doi.org/10.1021/acsphotonics.8b00276
[28]
Wu, L., et al. (2016) A New Ba0.6Sr0.4TiO3-Silicon Hybrid Metamaterial Device in Terahertz Regime. Small, 12, 2610-2615. https://doi.org/10.1002/smll.201600276
[29]
Vázquez-colón, C.D., Zepeda, J.A., Ayón, A. and Shreiber, D. (2017) Reconfigurable Behavior of CdTe Quantum Dots at Terahertz Frequencies Employing UV Excitation. Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS, Bordeaux, 29 May-1 June 2017, 4-6.
[30]
Yu, W.W., Qu, L., Guo, W. and Peng, X. (2003) Experimental Determination of the Extinction Coefficient of CdTe, CdSe, and CdS Nanocrystals. Chemistry of Materials, 15, 2854-2860. https://doi.org/10.1021/cm034081k
[31]
Wu, S., Dou, J., Zhang, J. and Zhang, S. (2012) A Simple and Economical One-Pot Method to Synthesize High-Quality Water Soluble CdTe QDs. Journal of Materials Chemistry, 22, 14573-14578. https://doi.org/10.1039/c2jm31409f
[32]
Ibrahim, A. and Al-Ani, S.K.J. (1994) Models of Optical Absorption in Amorphous Semiconductors at the Absorption Edge—A Review and Re-Evaluation. Czechoslovak Journal of Physics, 44, 785-797. https://doi.org/10.1007/BF01700645
[33]
Grigorovici, R., Vancu, A., et al. (1966) Optical Properties and Electronic Structure of Amorphous Germanium. Physica Status Solidi, 15, 627-637. https://doi.org/10.1002/pssb.19660150224
[34]
Kar, S. and Chaudhuri, S. (2005) Synthesis and Optical Properties of Single and Bicrystalline ZnS Nanoribbons. Chemical Physics Letters, 414, 40-46. https://doi.org/10.1016/j.cplett.2005.08.021
[35]
Brus, L.E. (1984) Electron-Electron and Electron-Hole Interactions in Small Semiconductor Crystallites: The Size Dependence of the Lowest Excited Electronic State. The Journal of Chemical Physics, 80, 4403-4409. https://doi.org/10.1063/1.447218
[36]
Pokutnyi, S.I. (2012) Exciton States in Quasi-Zero-Dimensional Semiconductor Nanosystems. Semiconductors, 46, 165-170. https://doi.org/10.1134/S1063782612020194
[37]
Flores-Pacheco, A., álvarez-Ramos, M.E. and Ayón, A. (2020) Down-Shifting by Quantum Dots for Silicon Solar Cell Applications. In: Solar Cells and Light Management, Elsevier, Amsterdam, 443-477. https://doi.org/10.1016/B978-0-08-102762-2.00013-6
[38]
Libon, I.H., et al. (1999) THz Spectroscopy of Polar Liquids. Proceedings Terahertz Spectroscopy and Applications, Vol. 3617, 24-29. https://doi.org/10.1117/12.347127
[39]
D’Arco, A., et al. (2020) Characterization of Volatile Organic Compounds (VOCs) in Their Liquid-Phase by Terahertz Time-Domain Spectroscopy. Biomedical Optics Express, 11, 1. https://doi.org/10.1364/BOE.11.000001
[40]
Gaponik, N., Talapin, D.V., Rogach, A.L. and Weller, H. (2002) Efficient Phase Transfer of Luminescent Thiol-Capped Nanocrystals: From Water to Nonpolar Organic Solvents. Nano Letters, 2, 803-806. https://doi.org/10.1021/nl025662w
[41]
Reipa, V., Purdum, G. and Choi, J. (2010) Measurement of Nanoparticle Concentration Using Quartz Crystal Microgravimetry. The Journal of Physical Chemistry B, 114, 16112-16117. https://doi.org/10.1021/jp103861m
[42]
Yang, F., et al. (2017) Uncertainty in Terahertz Time-Domain Spectroscopy Measurement of Liquids. Journal of Infrared, Millimeter, and Terahertz Waves, 38, 229-247. https://doi.org/10.1007/s10762-016-0318-1
[43]
Weissker, H.C., Furthmüller, J. and Bechstedt, F. (2003) Validity of Effective-Medium Theory for Optical Properties of Embedded Nanocrystallites from Ab Initio Supercell Calculations. Physical Review B: Condensed Matter and Materials Physics, 67, 1-5. https://doi.org/10.1103/PhysRevB.67.165322
[44]
Wang, F., Shan, J., Islam, M.A., Herman, I.P., Bonn, M. and Heinz, T.F. (2006) Exciton Polarizability in Semiconductor Nanocrystals. Nature Materials, 5, 861-864. https://doi.org/10.1038/nmat1739
[45]
Bingham, C.M., Tao, H., Liu, X., Averitt, R.D., Zhang, X. and Padilla, W.J. (2008) Planar Wallpaper Group Metamaterials for Novel Terahertz Applications. Optics Express, 16, 18565-18575. https://doi.org/10.1364/OE.16.018565
[46]
Dai, J., Zhang, J., Zhang, W. and Grischkowsky, D. (2004) Terahertz Time-Domain Spectroscopy Characterization of the Far-Infrared Absorption and Index of Refraction of High-Resistivity, Float-Zone Silicon. Journal of the Optical Society of America B, 21, 1379. https://doi.org/10.1364/JOSAB.21.001379
[47]
Tsiatmas, A., Fedotov, V.A., García De Abajo, F.J. and Zheludev, N.I. (2012) Low-Loss Terahertz Superconducting Plasmonics. New Journal of Physics, 14, Article ID: 115006. https://doi.org/10.1088/1367-2630/14/11/115006
[48]
Withayachumnankul, W. and Naftaly, M. (2014) Fundamentals of Measurement in Terahertz Time-Domain Spectroscopy. Journal of Infrared, Millimeter, and Terahertz Waves, 35, 610-637. https://doi.org/10.1007/s10762-013-0042-z
[49]
Lee, D. and Cui, T. (2012) A Role of Silica Nanoparticles in Layer-by-Layer Self-Assembled Carbon Nanotube and In2O3 Nanoparticle Thin-Film pH Sensors: Tunable Sensitivity and Linearity. Sensors and Actuators A: Physical, 188, 203-211. https://doi.org/10.1016/j.sna.2012.01.004