The present
paper deals with carbon in highly organized solids like graphene and its three-dimensional
derivatives: fullerenes, carbon nanotubes and capped carbon nanotubes. It proposes
an alternative to the typical bonding pattern exposed in literature. This novel
bonding pattern involves alternating positively and negatively charged carbon atoms
around hexagonal rings, then a few uncharged and partially bonded atoms close to
the pentagon rings. The article focuses on fullerenes inscribed into a regular icosahedron,
then addressing the most common fullerenes like C60. Carbon atoms are found to have
predominantly three single bonds and less often two separated single bonds. The same pattern explains equally well carbon
nanotubes and closed-tip nanotubes, of which C70 is a special case.
References
[1]
https://en.wikipedia.org/wiki/Carbon
[2]
ōsawa, E. (2002) Perspectives of Fullerene Nanotechnology. Springer Science & Business Media, Berlin, 275. https://doi.org/10.1007/978-94-010-9598-3
Greenwood, N.N. and Earnshaw, A. (1998) Chemistry of the Elements. 2nd Edition, Butterworth-Heinemann, Oxford.
[5]
https://en.wikipedia.org/wiki/Fullerene
[6]
Schwerdtfeger, P., Wirz, L.N. and Avery, J. (2014) The Topology of Fullerenes. Wiley Interdisciplinary Reviews (WIRE): Computational Molecular Science, 5, 96-145. https://doi.org/10.1002/wcms.1207
[7]
https://en.wikipedia.org/wiki/Covalent_bond
[8]
Schmalz, T.G., Seitz, W.A., Klein, D.J. and Hite, G.E. (1988) C60 Carbon Cages. Journal of the American Chemical Society, 110, 1113-1127. https://doi.org/10.1021/ja00212a020
[9]
Krätschmer, W., Lamb, L., Fostiropoulos, K. and Huffman, D.R. (1990) Solid C60: A New Form of Carbon. Nature, 347, 354-358. https://doi.org/10.1038/347354a0
[10]
Raebiger, J.W., Alford, J.M., Bolskar, R.D. and Diener, M.D. (2011) Chemical Redox Recovery of Giant, Small-Gap and Other Fullerenes, Carbon, 49, 37-46. https://doi.org/10.1016/j.carbon.2010.08.039
[11]
Dunk, P., Hiroyuki, N., Hisanori, S., Marshall, A. and Kroto, H. (2015) Large Fullerenes in Mass Spectra. Molecular Physics, 113, 2359-2361. https://doi.org/10.1080/00268976.2015.1046963
[12]
https://www.britannica.com/science/fullerene
[13]
https://en.wikipedia.org/wiki/Graphene
[14]
Rumble, J. (2015) CRC Handbook of Chemistry and Physics. 96th Edition, CRC Press, Boca Raton, 2677.
[15]
Auvert, G. (2014) The Even-Odd Rule on Single Covalent-Bonded Structural Formulas as a Modification of Classical Structural Formulas of Multiple-Bonded Ions and Molecules. Open Journal of Physical Chemistry, 4, 173-184. https://doi.org/10.4236/ojpc.2014.44020
[16]
Auvert, G. (2017) Difference in Number of Electrons in Inner Shells of Charged or Uncharged Elements in Organic and Inorganic Chemistry: Compatibility with the Even-Odd Rule. Open Journal of Physical Chemistry, 7, 72-88. https://doi.org/10.4236/ojpc.2017.72006
[17]
Auvert, G. (2020) Covalent Bonds Creation between Gas and Liquid Phase Change: Compatibility with Covalent and Even-Odd Rules Based on a “Specific Periodic Table for Liquids”. Open Journal of Physical Chemistry, 10, 68-85. https://doi.org/10.4236/ojpc.2020.101004
Kroto, H.W. (1987) The Stability of the Fullerenes Cn, with n = 24, 28, 32, 36, 60, and 70. Nature, 329, 529-531. https://doi.org/10.1038/329529a0
[26]
Радушкевич, Л.В. (1952) О Структуре Углерода, Образующегося При Термическом Разложении Окиси Углерода На Железном Контакте (PDF). Журнал Физической Химии, 26, 88-95. (In Russian)
[27]
Iijima, S. and Ichihashi, T. (1993) Single-Shell Carbon Nanotubes of 1-nm Diameter. Nature, 363, 603-605. https://doi.org/10.1038/363603a0
[28]
Bethune, D.S., Kiang, C.H., de Vries, M.S., Gorman, G. and Savoy, R. (1993) Cobalt-Catalysed Growth of Carbon Nanotubes with Single-Atomic-Layer Walls. Nature, 363, 605-607. https://doi.org/10.1038/363605a0
[29]
https://en.wikipedia.org/wiki/Carbon_nanotube
[30]
de Jonge, N., Doytcheva, M., Allioux, M., Kaiser, M., Mentink, S.A.M., Teo, K.B.K., Lacerda, R.G. and Milne, W.I. (2005) Cap Closing of Thin Carbon Nanotube. Advanced Materials, 17, 451-455. https://doi.org/10.1002/adma.200400266
[31]
Hua, H., Pham-Huy, L., Dramou, P., Xiao, D., Zuo, P.L. and Pham-Huy, C. (2013) Carbon Nanotubes: Applications in Pharmacy and Medicine. BioMed Research International, 2013, Article ID: 578290. https://doi.org/10.1155/2013/578290
[32]
Prinzbach, H., Weiler, A., Landenberger, P., Wahl, F., Wörth, J., Scott, L.T., Gelmont, M., Daniela Olevano, D. and Issendorff, B.V. (2000) Gas-Phase Production and Photoelectron Spectroscopy of the Smallest Fullerene, C20. Nature, 407, 60-63. https://doi.org/10.1038/35024037
Heath, J.R., O’Brien, S.C., Zhang, Q., Liu, Y., Curl, R.F., Kroto, H.W., Tittel, F.K. and Smalley, R.E. (1985) Lanthanum Complexes of Spheroidal Carbon Shells. Journal of the American Chemical Society, 107, 7779-7780. https://doi.org/10.1021/ja00311a102
[35]
Saunders, M., Jimenez-Vazquez, H.A., Cross, R.J., Mroczkowski, S., Gross, M.L., Michael, L., Giblin, D.E. and Poreda, R.J. (1994) Incorporation of Helium, Neon, Argon, Krypton, and Xenon into Fullerenes Using High Pressure. Journal of the American Chemical Society, 116, 2193-2194. https://doi.org/10.1021/ja00084a089
[36]
Saunders, M., Jiménez-Vázquez, H.A., Cross, R.J. and Poreda, R.J. (1993) Stable Compounds of Helium and Neon: He@C60 and Ne@C60. Sciences, 259, 1428-1430. https://doi.org/10.1126/science.259.5100.1428