全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

A Multi-Parameter Sensor Based on Cascaded Photonic Crystal Cavities Filled with Magnetic Fluid

DOI: 10.4236/opj.2020.107020, PP. 183-196

Keywords: Magnetic Field Sensing, Magnetic Fluid, Micro-Cavity, Photonic Crystal, Temperature Sensing

Full-Text   Cite this paper   Add to My Lib

Abstract:

A kind of photonic crystal (PC) micro-cavity sensor based on magnetic fluid (MF) filling is designed with simulation model. Generally, many sensors’ designs are based on a universal temperature in the whole structure. However, strong photothermal effect in high Q micro-cavities will lead to different temperatures between cavities and environment inevitably. In many theoretical PC sensor designs, researchers neglected the different temperature between environment and cavities. This simple hypothesis will probably lead to failure of sensor design and get wrong temperature. Moreover, few theoretical or experimental works have been done to study optical cavity’s heating process and temperature. We propose that researchers should take seriously about this point. Here, the designed cascaded micro-cavity structure has three spectral lines and a reversible sensitivity matrix, which can simultaneously detect magnetic field, ambient temperature and MF micro-cavity temperature. It can solve the magnetic field and temperature cross-sensitivity problem, and further, distinguish the different temperatures of environment and magnetic fluid cavities. The influence of hole radius and slab thickness on the depth and Q value of the resonant spectral line are also studied. Responses of three dips to magnetic field, ambient temperature and MF micro-cavity temperature are simulated, respectively, where dip 1 belongs to MF cavity 1, dip 2 and dip 3 belong to MF cavity 2. The obtained magnetic field sensitivities are 2.89 pm/Oe, 4.57 pm/Oe, and 5.14 pm/Oe, respectively; the ambient temperature sensitivities are 65.51 pm/K, 50.94 pm/K, and 58.98 pm/K, respectively; and the MF micro-cavity temperature sensitivities are ?14.41 pm/K, ?17.06 pm/K, and ?18.81 pm/K, respectively.

References

[1]  Rosensweig, R.E. (2014) Ferrohydrodynamics. Dover Publications, Mineola.
[2]  Hong, C.Y., Yang, S.Y., Horng, H.E. and Yang, H.C. (2003) Control Parameters for the Tunable Refractive Index of Magnetic Fluid Films. Journal of Applied Physics, 94, 3849-3852.
https://doi.org/10.1063/1.1597760
[3]  Chen, Y.F., Yang, S.Y., Tse, W.S., Horng, H.E., Hong, C.Y. and Yang, H.C. (2003) Thermal Effect on the Field-Dependent Refractive Index of the Magnetic Fluid Film. Applied Physics Letters, 82, 3481-3483.
https://doi.org/10.1063/1.1576292
[4]  Wang, W.H., Zhang, H.M., Li, B., Li, Z. and Miao, Y.P. (2019) Optical Fiber Magnetic Field Sensor Based on Birefringence in Liquid Core Optical Waveguide. Optical Fiber Technology, 50, 114-117.
https://doi.org/10.1016/j.yofte.2019.03.011
[5]  Xu, M. and Ridler, P.J. (1997) Linear Dichroism and Birefringence Effects in Magnetic Fluids. Journal of Applied Physics, 82, 326-332.
https://doi.org/10.1063/1.365816
[6]  Joannopoulos, J.D., Johnson, S.G. and Winn, J.N. (2008) Photonic Crystals: Molding the Flow of Light. Princeton University Press, Princeton.
[7]  Baba, T. (2008) Slow Light in Photonic Crystals. Nature Photonics, 2, 465-473.
https://doi.org/10.1038/nphoton.2008.146
[8]  Zhuang, Y., Chen, H. and Ji, K. (2017) Cascaded Chirped Narrow Bandpass Filter with Flat-Top Based on Two-Dimensional Photonic Crystals. Applied Optics, 56, 4185-4190.
https://doi.org/10.1364/AO.56.004185
[9]  Yu, Y., Heuck, M., Hu, H., Xue, W.Q., Peucheret, C., Chen, Y.H., Oxenløwe, L.K., Yvind, K. and Mørk, J. (2014) Fano Resonance Control in a Photonic Crystal Structure and Its Application to Ultrafast Switching. Applied Physics Letters, 105, Article ID: 061117.
https://doi.org/10.1063/1.4893451
[10]  Husko, C., Vo, T.D., Corcoran, B., Li, J., Krauss, T.F. and Eggleton, B.J. (2011) Ultracompact All-Optical XOR Logic Gate in a Slow-Light Silicon Photonic Crystal Waveguide. Optics Express, 19, 20681-20690.
https://doi.org/10.1364/OE.19.020681
[11]  Ye, H., Wang, D.L., Yu, Z.Y., Zhang, J.Q.N. and Chen, Z.H. (2015) Ultra-Compact Broadband Mode Converter and Optical Diode Based on Linear Rod-Type Photonic Crystal Waveguide. Optics Express, 23, 9673-9680.
https://doi.org/10.1364/OE.23.009673
[12]  Sollner, I., Mahmoodian, S., Hansen, S.L., Midolo, L., Javadi, A., Kiršanskė, G., Pregnolato, T., El-Ella, H., Lee, E.H., Song, J.D., Stobbe, S. and Lodahl, P. (2015) Deterministic Photon-Emitter Coupling in Chiral Photonic Circuits. Nature Nanotechnology, 10, 775-778.
https://doi.org/10.1038/nnano.2015.159
[13]  Lai, W.C., Chakravarty, S., Zou, Y. and Chen, R.T. (2012) Silicon Nano-Membrane Based Photonic Crystal Microcavities for High Sensitivity Bio-Sensing. Optics Letters, 37, 1208-1210.
https://doi.org/10.1364/OL.37.001208
[14]  Sünner, T., Stichel, T., Kwon, S.H., Schlereth, T.W., Höfling, S., Kamp, M. and Forchel, A. (2008) Photonic Crystal Cavity Based Gas Sensor. Applied Physics Letters, 92, Article ID: 261112.
https://doi.org/10.1063/1.2955523
[15]  Baker, J.E., Sriram, R. and Miller, B.L. (2017) Recognition-Mediated Particle Detection under Microfluidic Flow with Waveguide-Coupled 2D Photonic Crystals: Towards Integrated Photonic Virus Detectors. Lab on a Chip, 17, 1570-1577.
https://doi.org/10.1039/C7LC00221A
[16]  Cardador, D., Segura, D. and Rodriguez, A. (2018) Photonic Molecules for Improving the Optical Response of Macroporous Silicon Photonic Crystals for Gas Sensing Purposes. Optics Express, 26, 4621-4630.
https://doi.org/10.1364/OE.26.004621
[17]  Caer, C., Serna-Otálvaro, S.F., Zhang, W.W., Roux, X.L. and Cassan, E. (2014) Liquid Sensor Based on High-Q Slot Photonic Crystal Cavity in Silicon-on-Insulator Configuration. Optics Letters, 39, 5792-5794.
https://doi.org/10.1364/OL.39.005792
[18]  Zhu, E.Y., Rewcastle, C., Gad, R., Qian, L. and Levi, O. (2019) Refractive-Index-Based Ultrasound Sensing with Photonic Crystal Slabs. Optics Letters, 44, 2609-2612.
https://doi.org/10.1364/OL.44.002609
[19]  Zhao, Y., Zhang, Y.N. and Lv, R.Q. (2015) Simultaneous Measurement of Magnetic Field and Temperature Based on Magnetic Fluid-Infiltrated Photonic Crystal Cavity. IEEE Transactions on Instrumentation and Measurement, 64, 1055-1062.
https://doi.org/10.1109/TIM.2014.2360789
[20]  Liu, Z.Q., Sun, F.J., Wang, C. and Tian, H.P. (2019) Side-Coupled Nanoscale Photonic Crystal Structure with High-Q and High-Stability for Simultaneous Refractive Index and Temperature Sensing. Journal of Modern Optics, 66, 1339-1346.
https://doi.org/10.1080/09500340.2019.1617444
[21]  Yao, T.J., Pu, S.L., Rao, J. and Zhang, J.M. (2018) Investigation of Optical Force on Magnetic Nanoparticles with Magnetic-Fluid-Filled Fabry-Perot Interferometer. Scientific Reports, 9, Article No. 12352.
https://doi.org/10.1038/s41598-018-30092-7
[22]  Notomi, M., Yamada, K., Shinya, A., Takahashi, J., Takahashi, C. and Yokohama, I. (2001) Extremely Large Group-Velocity Dispersion of Line-Defect Waveguides in Photonic Crystal Slabs. Physical Review Letters, 87, Article ID: 253902.
https://doi.org/10.1103/PhysRevLett.87.253902
[23]  Schulz, S.A., Upham, J., O’Faolain, L. and Boyd, R.W. (2017) Photonic Crystal Slow Light Waveguides in a Kagome Lattice. Optics Letters, 42, 3243-3246.
https://doi.org/10.1364/OL.42.003243
[24]  Su, D.L., Pu, S.L., Mao, L.M., Wang, Z.F. and Qian, K. (2016) A Photonic Crystal Magnetic Field Sensor Using Ashoulder-Coupled Resonant Cavity Infiltrated with Magnetic Fluid. Sensors, 16, 2157.
https://doi.org/10.3390/s16122157
[25]  Snyder, A.W. and Love, J.D. (1983) Optical Waveguide Theory. Chapman & Hall, London.
[26]  https://www.lumerical.com
[27]  Frey, B.J., Leviton, D.B. and Madison, T.J. (2006) Temperature-Dependent Refractive Index of Silicon and Germanium. SPIE, 6273, 62732J.
https://doi.org/10.1117/12.672850
[28]  Komma, J., Schwarz, C., Hofmann, G., Heinert, D. and Nawrodt, R. (2012) Thermo-Optic Coefficient of Silicon at 1550 nm and Cryogenic Temperatures. Applied Physics Letters, 101, Article ID: 041905.
https://doi.org/10.1063/1.4738989
[29]  Benmerkhi, A., Bouchemat, M. and Bouchemat, T. (2016) Improved Sensitivity of the Photonic Crystal Slab Biosensors by Using Elliptical Air Holes. Optik, 127, 5682-5687.
https://doi.org/10.1016/j.ijleo.2016.03.057
[30]  Deghdak, R., Bouchemat, M., Bouchemat, T., Lahoubi, M. and Otmani, H. (2016) Optimized Complete Photonic Band Gap in Magneto-Photonic Crystal Slab. Journal of Nanoscience and Nanotechnology, 6, 39-42.
[31]  Johnson, S.G., Fan, S.H., Villeneuve, P.R., Joannopoulos, J.D. and Kolodziejski, L.A. (1999) Guided Modes in Photonic Crystal Slabs. Physical Review B, 60, 5751-5758.
https://doi.org/10.1103/PhysRevB.60.5751
[32]  Hong, C.Y., Drikis, I., Yang, S.Y., Horng, H.E. and Yang, H.C. (2003) Slab-Thickness Dependent Band Gap Size of Two-Dimensional Photonic Crystals with Triangular-Arrayed Dielectric or Magnetic Rods. Journal of Applied Physics, 94, 2188-2191.
https://doi.org/10.1063/1.1595709
[33]  Bayat, K., Chaudhuri, S.K. and Safavi-Naeini, S. (2007) Polarization and Thickness Dependent Guiding in the Photonic Crystal Slab Waveguide. Optics Express, 15, 8391-8400.
https://doi.org/10.1364/OE.15.008391
[34]  Hou, J., Citrin, D.S., Wu, H.M., Gao, D.S., Zhou, Z.P. and Chen, S.P. (2012) Slab-Thickness Dependence of Photonic Bandgap in Photonic-Crystal Slabs. IEEE Journal of Selected Topics in Quantum Electronics, 18, 1636-1642.
https://doi.org/10.1109/JSTQE.2011.2169773
[35]  Tandaechanurat, A., Iwamoto, S., Nomura, M., Kumagai, N. and Arakawa, Y. (2008) Increase of Q-Factor in Photonic Crystal H1-Defect Nanocavities after Closing of Photonic Bandgap with Optimal Slab Thickness. Optics Express, 16, 448-455.
https://doi.org/10.1364/OE.16.000448
[36]  Saker, K., Bouchemat, T., Lahoubi, M., Bouchemat, M. and Pu, S.L. (2019) Magnetic Field Sensor Based on a Magnetic-Fluid-Infiltrated Photonic Crystal L4 Nanocavity and Broadband W1 Waveguide. Journal of Computational Electronics, 18, 619-627.
https://doi.org/10.1007/s10825-019-01315-5

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133