全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2016 

Connectome-scale group-wise consistent resting-state network analysis in autism spectrum disorder

DOI: 10.1016/j.nicl.2016.06.004

Keywords: Functional brain network, Resting-state network, fMRI, Volume shape descriptor, Autism spectrum disorder, Sparse representation, Connectomics signature

Full-Text   Cite this paper   Add to My Lib

Abstract:

Understanding the organizational architecture of human brain function and its alteration patterns in diseased brains such as Autism Spectrum Disorder (ASD) patients are of great interests. In-vivo functional magnetic resonance imaging (fMRI) offers a unique window to investigate the mechanism of brain function and to identify functional network components of the human brain. Previously, we have shown that multiple concurrent functional networks can be derived from fMRI signals using whole-brain sparse representation. Yet it is still an open question to derive group-wise consistent networks featured in ASD patients and controls. Here we proposed an effective volumetric network descriptor, named connectivity map, to compactly describe spatial patterns of brain network maps and implemented a fast framework in Apache Spark environment that can effectively identify group-wise consistent networks in big fMRI dataset. Our experiment results identified 144 group-wisely common intrinsic connectivity networks (ICNs) shared between ASD patients and healthy control subjects, where some ICNs are substantially different between the two groups. Moreover, further analysis on the functional connectivity and spatial overlap between these 144 common ICNs reveals connectomics signatures characterizing ASD patients and controls. In particular, the computing time of our Spark-enabled functional connectomics framework is significantly reduced from 240 hours (C ++ code, single core) to 20 hours, exhibiting a great potential to handle fMRI big data in the future

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133