全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 

Predicting behavioral variant frontotemporal dementia with pattern classification in multi-center structural MRI data

DOI: 10.1016/j.nicl.2017.02.001

Keywords: bvFTD, behavioral variant frontotemporal dementia, FTLD, frontotemporal lobar degeneration, FEW, family wise error, GMD, gray matter density, MNI, Montreal Neurological Institute, MPRAGE, magnetization-prepared rapid gradient echo, MRI, magnetic resonance imaging, SVM, support vector machine, VBM, voxel based morphometry Atrophy, Behavioral variant frontotemporal dementia, Diagnostic criteria, Frontotemporal lobar degeneration, MRI, Pattern classification

Full-Text   Cite this paper   Add to My Lib

Abstract:

Frontotemporal lobar degeneration (FTLD) is a common cause of early onset dementia. Behavioral variant frontotemporal dementia (bvFTD), its most common subtype, is characterized by deep alterations in behavior and personality. In 2011, new diagnostic criteria were suggested that incorporate imaging criteria into diagnostic algorithms. The study aimed at validating the potential of imaging criteria to individually predict diagnosis with machine learning algorithms

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133