全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2019 

Pesticide Encapsulation at the Nanoscale Drives Changes to the Hydrophobic Partitioning and Toxicity of an Active Ingredient

DOI: 10.3390/nano9010081

Keywords: nanopesticide, pyrethroid, nanoenabled, other ingredients, pesticide risk assessment, nanotoxicology, encapsulated

Full-Text   Cite this paper   Add to My Lib

Abstract:

Given the costs associated with designing novel active ingredients, new formulations focus on the use of other ingredients to modify existing formulations. Nanosized encapsulated pesticides offer a variety of enhanced features including controlled release and improved efficacy. Despite the presence of nanosized capsules in current-use pesticide formulations, the analytical and toxicological implications of encapsulation are uncertain. To explore this issue quantitatively, we fractionated the capsules of a commercially available encapsulated insecticide formulation (γ-cyhalothrin active ingredient) into two size ranges: a large fraction (LF), with an average hydrodynamic diameter (HDD) of 758 nm, and a small fraction (SF), with an average HDD of 449 nm. We developed a novel extraction method demonstrating a time-dependent inhibition of γ-cyhalothrin from capsules for up to 48 h. An acute immobilization test with a freshwater macroinvertebrate (Ceriodaphnia dubia) revealed that the SF was significantly more toxic than both the LF and the free γ-cyhalothrin treatment (EC50 = 0.18 μg/L, 0.57 μg/L, and 0.65 μg/L, respectively). These findings highlight that encapsulation of γ-cyhalothrin mitigates hydrophobic partitioning in a time-dependent manner and influences toxicity in a size-dependent manner. Recognizing the analytical and toxicological nuances of various nanosized capsules can contribute to innovation in pesticide formulations and may lead to more comprehensive pesticide regulation

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133