|
Performance Evaluation of Triple Play Services Delivery with E2E QoS ProvisioningDOI: 10.1155/2010/836501 Abstract: The creation and wide use of new high quality demanding services (VoIP, High Quality Video Streaming) and the delivery of them over already saturated core and access network infrastructures have created the necessity for E2E QoS provisioning. Network Providers use at their infrastructures several kinds of mechanisms and techniques for providing QoS. Most known and widely used technologies are MPLS and DiffServ. The IEEE 802.16-2004 standard (WiMAX) refers to a promising wireless broadband technology with enhanced QoS support algorithms. This document presents an experimental network infrastructure providing E2E QoS, using a combination of MPLS and DiffServ technologies in the core network and WiMAX technology as the wireless access medium for high priority services (VoIP, High Quality Video Streaming) transmission. The main scope is to map the traffic prioritization and classification attributes of the core network to the access network in a way which does not affect the E2E QoS provisioning. The performance evaluation will be done by introducing different kinds of traffic scenarios in a saturated and overloaded network environment. The evaluation will prove that this combination made feasible the E2E QoS provisioning while keeping the initial constrains as well as the services delivered over a wireless network. 1. Introduction The increased use of the Internet and the creation of new high quality (bandwidth, loss, and delay sensitive) services (Internet telephony, High-quality video, and time critical data) have created an extremely large capacity problem to the core and access network infrastructures. In order to transfer such kinds of services, the networks should support high bandwidth, low-delay and low-jitter (Delay variation) transmission. In order to achieve a transmission keeping these constrains, the core networks should support service separation and service prioritization, in order to transfer different kinds of traffic with different behaviour aggregates. Such solutions are provided by the well-known Multiprotocol Label Switching mechanism and Differential Services protocol which are used for traffic engineering and QoS provisioning in the core networks. The promising WiMAX technology includes features that support QoS algorithms which could be used for the expansion of QoS constrains used by a wired QoS-enabled network to a wireless access network. Despite the QoS perspective investigation regarding the MPLS, DiffServ technologies have been analysed in deep, and the performance of these technologies with the WiMAX technology fusion has
|