全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 

Bootstrap-based Feature Selection to Balance Model Discrimination and Predictor Significance: A Study of Stroke Prediction in Atrial Fibrillation

Full-Text   Cite this paper   Add to My Lib

Abstract:

Atrial fibrillation (AF) is a common cardiac arrhythmias, which increases the risk and severity of ischemic stroke. For predicting ischemic stroke in AF patients, a risk prediction model that can achieve both good model discrimination (e.g., A UC) and statistical significance ofpredictors is required in real clinical practices. In this paper, we propose a new bootstrap-based wrapper (Boots-wrapper) method of feature selection, and apply this method on Chinese Atrial Fibrillation Registry data to develop 1-year stroke prediction models in AF. The proposed method can heuristically search a subset of features to maximize the discrimination of the prediction model and minimize the penalty for the non-significant features. To achieve robust feature selection, we perform bootstrap sampling to get a more reliable estimate of the variation and significance statistics. The experimental results show that Boots-wrapper can balance model discrimination and statistical significance offeatures for developing AF stroke prediction models

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133