全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

Towards a Learning Health System to Reduce Emergency Department Visits at a Population Level

Full-Text   Cite this paper   Add to My Lib

Abstract:

High utilizers of the Emergency Department (ED) often have complex needs that require coordination of care between multiple organizations. We describe a Learning Health Systems (LHS) approach to reducing ED visits, in which an intervention is delivered to a cohort of high utilizers identified using population-level data and predictive modeling. We focus on the development and validation of a random forest model that utilizes electronic health record data from three health systems across two counties in Michigan to predict the number of ED visits each resident will incur in the next six months. Using 5-fold cross-validation, the model achieves a root-mean-squared-error of 0.51 visits and a mean absolute error of 0.24 visits. Using time-based validation, the model achieves a root-mean-squared error of 0.74 visits and a mean absolute error of 0.29 visits. Patients projected to have high ED utilization are being enrolled in a community-wide care coordination intervention using twelve sites across two counties. We believe that the repeated cycles of modeling and intervention demonstrate an LHS in action

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133