全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 

Strategies Based on Nitride Materials Chemistry to Stabilize Li Metal Anode

DOI: 10.1002/advs.201600517

Keywords: first‐principles calculations, lithium‐ion batteries, lithium metal anodes, solid‐electrolyte‐interphase, all‐solid‐state batteries

Full-Text   Cite this paper   Add to My Lib

Abstract:

Lithium metal battery is a promising candidate for high‐energy‐density energy storage. Unfortunately, the strongly reducing nature of lithium metal has been an outstanding challenge causing poor stability and low coulombic efficiency in lithium batteries. For decades, there are significant research efforts to stabilize lithium metal anode. However, such efforts are greatly impeded by the lack of knowledge about lithium‐stable materials chemistry. So far, only a few materials are known to be stable against Li metal. To resolve this outstanding challenge, lithium‐stable materials have been uncovered out of chemistry across the periodic table using first‐principles calculations based on large materials database. It is found that most oxides, sulfides, and halides, commonly studied as protection materials, are reduced by lithium metal due to the reduction of metal cations. It is discovered that nitride anion chemistry exhibits unique stability against Li metal, which is either thermodynamically intrinsic or a result of stable passivation. The results here establish essential guidelines for selecting, designing, and discovering materials for lithium metal protection, and propose multiple novel strategies of using nitride materials and high nitrogen doping to form stable solid‐electrolyte‐interphase for lithium metal anode, paving the way for high‐energy rechargeable lithium batteries

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133