全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Numerical Solution of the Modified Equal Width Wave Equation

DOI: 10.1155/2012/587208

Full-Text   Cite this paper   Add to My Lib

Abstract:

Numerical solution of the modified equal width wave equation is obtained by using lumped Galerkin method based on cubic B-spline finite element method. Solitary wave motion and interaction of two solitary waves are studied using the proposed method. Accuracy of the proposed method is discussed by computing the numerical conserved laws and error norms. The numerical results are found in good agreement with exact solution. A linear stability analysis of the scheme is also investigated. 1. Introduction The modified equal width wave equation (MEW) based upon the equal width wave (EW) equation [1, 2] which was suggested by Morrison et al. [3] is used as a model partial differential equation for the simulation of one-dimensional wave propagation in nonlinear media with dispersion processes. This equation is related with the modified regularized long wave (MRLW) equation [4] and modified Korteweg-de Vries (MKdV) equation [5]. All the modified equations are nonlinear wave equations with cubic nonlinearities and all of them have solitary wave solutions, which are wave packets or pulses. These waves propagate in non-linear media by keeping wave forms and velocity even after interaction occurs. Few analytical solutions of the MEW equation are known. Thus numerical solutions of the MEW equation can be important and comparison between analytic solution can be made. Geyikli and Battal Gazi Karako? [6, 7] solved the MEW equation by a collocation method using septic B-spline finite elements and using a Petrov-Galerkin finite element method with weight functions quadratic and element shape functions which are cubic B-splines. Esen applied a lumped Galerkin method based on quadratic B-spline finite elements which have been used for solving the EW and MEW equation [8, 9]. Saka proposed algorithms for the numerical solution of the MEW equation using quintic B-spline collocation method [10]. Zaki considered the solitary wave interactions for the MEW equation by collocation method using quintic B-spline finite elements [11] and obtained the numerical solution of the EW equation by using least-squares method [12]. Wazwaz investigated the MEW equation and two of its variants by the tanh and the sine-cosine methods [13]. A solution based on a collocation method incorporated cubic B-splines is investigated by and Saka and Da? [14]. Variational iteration method is introduced to solve the MEW equation by Lu [15]. Evans and Raslan [16] studied the generalized EW equation by using collocation method based on quadratic B-splines to obtain the numerical solutions of a single solitary

References

[1]  L. R. T. Gardner and G. A. Gardner, “Solitary waves of the regularised long-wave equation,” Journal of Computational Physics, vol. 91, no. 2, pp. 441–459, 1990.
[2]  L. R. T. Gardner and G. A. Gardner, “Solitary waves of the equal width wave equation,” Journal of Computational Physics, vol. 101, no. 1, pp. 218–223, 1992.
[3]  P. J. Morrison, J. D. Meiss, and J. R. Cary, “Scattering of regularized-long-wave solitary waves,” Physica D. Nonlinear Phenomena, vol. 11, no. 3, pp. 324–336, 1984.
[4]  Kh. O. Abdulloev, I. L. Bogolubsky, and V. G. Makhankov, “One more example of inelastic soliton interaction,” Physics Letters. A, vol. 56, no. 6, pp. 427–428, 1976.
[5]  L. R. T. Gardner, G. A. Gardner, and T. Geyikli, “The boundary forced MKdV equation,” Journal of Computational Physics, vol. 113, no. 1, pp. 5–12, 1994.
[6]  T. Geyikli and S. Battal Gazi Karako?, “Septic B-Spline Collocation Method for the Numerical Solution of the Modified Equal Width Wave Equation,” Applied Mathematics, vol. 2, no. 6, pp. 739–749, 2011.
[7]  T. Geyikli and S. Battal Gazi Karako?, “Petrov-Galerkin method with cubic Bsplines for solving the MEW equation,” Bulletin of the Belgian Mathematical Society. In press.
[8]  A. Esen, “A numerical solution of the equal width wave equation by a lumped Galerkin method,” Applied Mathematics and Computation, vol. 168, no. 1, pp. 270–282, 2005.
[9]  A. Esen, “A lumped Galerkin method for the numerical solution of the modified equal-width wave equation using quadratic B-splines,” International Journal of Computer Mathematics, vol. 83, no. 5-6, pp. 449–459, 2006.
[10]  B. Saka, “Algorithms for numerical solution of the modified equal width wave equation using collocation method,” Mathematical and Computer Modelling, vol. 45, no. 9-10, pp. 1096–1117, 2007.
[11]  S. I. Zaki, “Solitary wave interactions for the modified equal width equation,” Computer Physics Communications, vol. 126, no. 3, pp. 219–231, 2000.
[12]  S. I. Zaki, “Least-squares finite element scheme for the EW equation,” Computer Methods in Applied Mechanics and Engineering, vol. 189, no. 2, pp. 587–594, 2000.
[13]  A.-M. Wazwaz, “The tanh and the sine-cosine methods for a reliable treatment of the modified equal width equation and its variants,” Communications in Nonlinear Science and Numerical Simulation, vol. 11, no. 2, pp. 148–160, 2006.
[14]  B. Saka and Da?, “Quartic B-spline collocation method to the numerical solutions of the Burgers' equation,” Chaos, Solitons and Fractals, vol. 32, no. 3, pp. 1125–1137, 2007.
[15]  J. Lu, “He's variational iteration method for the modified equal width equation,” Chaos, Solitons and Fractals, vol. 39, no. 5, pp. 2102–2109, 2009.
[16]  D. J. Evans and K. R. Raslan, “Solitary waves for the generalized equal width (GEW) equation,” International Journal of Computer Mathematics, vol. 82, no. 4, pp. 445–455, 2005.
[17]  S. Hamdi, W. H. Enright, W. E. Schiesser, and J. J. Gottlieb, “Exact solutions of the generalized equal width wave equation,” in Proceedings of the International Conference on Computational Science and Its Application, vol. 2668, pp. 725–734, Springer, 2003.
[18]  A. Esen and S. Kutluay, “Solitary wave solutions of the modified equal width wave equation,” Communications in Nonlinear Science and Numerical Simulation, vol. 13, no. 8, pp. 1538–1546, 2008.
[19]  P. M. Prenter, Splines and Variational Methods, John Wiley & Sons, New York, NY, USA, 1975.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133