|
- 2018
Нейросетевая модель распознавания стратегий вождения и взаимодействия водителей в условиях дорожного трафика 131Keywords: дорожно-транспортная среда, дорожное поведение, стратегии взаимодействия участников дорожного движения, стратегии вождения, нейросетевая модель, самоорганизующиеся карты (SOM) Abstract: В работе представлена нейросетевая модель для распознавания стратегий вождения на основе взаимодействия водителей в условиях транспортного потока. Рассмотрена архитектура модели, которая представляет собой самоорганизующуюся карту — SОМ (self-organizing map), состоящую из группы нейронных сетей, основанных на радиально-базисных функциях RBF (radial basis function). Цель настоящей работы заключается в том, чтобы описать архитектуру и структуру модели нейронной сети, которая позволяет распознавать стратегические особенности управления транспортным средством и способна идентифицировать стратегии взаимодействия автомобилей (водителей) в условиях транспортного потока, а также выделять такие поведенческие паттерны передвижения, которые могут быть соотнесены с различными типами опасного вождения. Из результатов исследования следует, что нейронные сети типа SOM RBF способны распознавать и классифицировать типы взаимодействий в условиях дорожного трафика, основываясь на моделировании анализа траекторий движения автомобилей. Данная нейронная сеть показала высокий процент распознавания и четкую кластеризацию схожих стратегий вождения
|