全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Corrosion Inhibition of Carbon Steel in HCl Solution by Some Plant Extracts

DOI: 10.1155/2012/897430

Full-Text   Cite this paper   Add to My Lib

Abstract:

The strict environmental legislations and increasing ecological awareness among scientists have led to the development of “green” alternatives to mitigate corrosion. In the present work, literature on green corrosion inhibitors has been reviewed, and the salient features of our work on green corrosion inhibitors have been highlighted. Among the studied leaves, extract Andrographis paniculata showed better inhibition performance (98%) than the other leaves extract. Strychnos nuxvomica showed better inhibition (98%) than the other seed extracts. Moringa oleifera is reflected as a good corrosion inhibitor of mild steel in 1?M HCl with 98% inhibition efficiency among the studied fruits extract. Bacopa monnieri showed its maximum inhibition performance to be 95% at 600 ppm among the investigated stem extracts. All the reported plant extracts were found to inhibit the corrosion of mild steel in acid media. 1. Introduction Among the several methods of corrosion control and prevention, the use of corrosion inhibitors is very popular. Corrosion inhibitors are substances which when added in small concentrations to corrosive media decrease or prevent the reaction of the metal with the media. Inhibitors are added to many systems, namely, cooling systems, refinery units, chemicals, oil and gas production units, boiler, and so forth. Most of the effective inhibitors are used to contain heteroatom such as O, N, and S and multiple bonds in their molecules through which they are adsorbed on the metal surface. It has been observed that adsorption depends mainly on certain physicochemical properties of the inhibitor group, such as functional groups, electron density at the donor atom, π-orbital character, and the electronic structure of the molecule. Though many synthetic compounds showed good anticorrosive activity, most of them are highly toxic to both human beings and environment. The use of chemical inhibitors has been limited because of the environmental threat, recently, due to environmental regulations. These inhibitors may cause reversible (temporary) or irreversible (permanent) damage to organ system, namely, kidneys or liver, or disturbing a biochemical process or disturbing an enzyme system at some site in the body. The toxicity may be manifest either during the synthesis of the compound or during its applications. These known hazardous effects of most synthetic corrosion inhibitors are the motivation for the use of some natural products as corrosion inhibitors. Plant extracts have become important because they are environmentally acceptable, inexpensive,

References

[1]  A. Y. El-Etre, M. Abdallah, and Z. E. El-Tantawy, “Corrosion inhibition of some metals using lawsonia extract,” Corrosion Science, vol. 47, no. 2, pp. 385–395, 2005.
[2]  E. A. Noor, “Temperature effects on the corrosion inhibition of mild steel in acidic solutions by aqueous extract of fenugreek leaves,” International Journal of Electrochemcal Science, vol. 2, pp. 996–1017, 2007.
[3]  A. Y. El-Etre, “Inhibition of acid corrosion of carbon steel using aqueous extract of olive leaves,” Journal of Colloid and Interface Science, vol. 314, no. 2, pp. 578–583, 2007.
[4]  P. B. Raja and M. G. Sethuraman, “Natural products as corrosion inhibitor for metals in corrosive media—A review,” Materials Letters, vol. 62, no. 1, pp. 113–116, 2008.
[5]  M. Shyamala and A. Arulanantham, “Eclipta alba as corrosion pickling inhibitor on mild steel in hydrochloric acid,” Journal of Materials Science and Technology, vol. 25, no. 5, pp. 633–636, 2009.
[6]  A. M. Abdel-Gaber, B. A. Abd-El-Nabey, and M. Saadawy, “The role of acid anion on the inhibition of the acidic corrosion of steel by lupine extract,” Corrosion Science, vol. 51, no. 5, pp. 1038–1042, 2009.
[7]  P. Bothi Raja and M. G. Sethuraman, “Solanum tuberosum as an inhibitor of mild steel corrosion in acid media,” Iranian Journal of Chemistry and Chemical Engineering, vol. 28, no. 1, pp. 77–84, 2009.
[8]  I. E. Uwah, P. C. Okafor, and V. E. Ebiekpe, “Inhibitive action of ethanol extracts from Nauclea latifolia on the corrosion of mild steel in H2SO4 solutions and their adsorption characteristics,” Arabian Journal of Chemistry. In press.
[9]  R. Saratha and R. Meenakshi, “Corrosion inhibitor-A plant extract,” Der Pharma Chemica, vol. 2, pp. 287–294, 2010.
[10]  A. Y. El-Etre, “Khillah extract as inhibitor for acid corrosion of SX 316 steel,” Applied Surface Science, vol. 252, no. 24, pp. 8521–8525, 2006.
[11]  M. J. Sanghvi, S. K. Shukla, A. N. Misra, M. R. Padh, and G. N. Mehta, “Inhibition of hydrochloric acid corrosion of mild steel by aid extracts of embilica officianalis, terminalia bellirica and terminalia chebula,” Bulletin of Electrochemistry, vol. 13, no. 8-9, pp. 358–361, 1997.
[12]  E. E. Ebenso, J. Udofot, J. Ekpe, and U. J. Ibok, “Studies on the inhibition of mild steel corrosion by some plant extracts in acidic medium,” Discovery and Innovation, vol. 10, no. 1-2, pp. 52–59, 1998.
[13]  A. Bouyanzer, B. Hammouti, and L. Majidi, “Pennyroyal oil from Mentha pulegium as corrosion inhibitor for steel in 1 M HCl,” Materials Letters, vol. 60, no. 23, pp. 2840–2843, 2006.
[14]  L. R. Chauhan and G. Gunasekaran, “Corrosion inhibition of mild steel by plant extract in dilute HCl medium,” Corrosion Science, vol. 49, no. 3, pp. 1143–1161, 2007.
[15]  E. Khamis and N. Alandis, “Herbs as new type of green inhibitors for acidic corrosion of steel,” Materialwissenschaft und Werkstofftechnik, vol. 33, no. 9, pp. 550–554, 2002.
[16]  H. H. Rehan, “Corrosion control by water-soluble extracts from leaves of economic plants,” Materialwissenschaft und Werkstofftechnik, vol. 34, no. 2, pp. 232–237, 2003.
[17]  M. G. Sethuraman and P. B. Raja, “Corrosion inhibition of mild steel by Datura metel in acidic medium,” Pigment and Resin Technology, vol. 34, no. 6, pp. 327–331, 2005.
[18]  R. A. L. Sathiyanathan, M. M. Essa, S. Maruthamuthu, M. Selvanayagam, and N. Palaniswamy, “Inhibitory effect of Ricinus communis (Castor-oil plant) leaf extract on corrosion of mild steel in low chloride medium,” Journal of the Indian Chemical Society, vol. 82, no. 4, pp. 357–359, 2005.
[19]  E. Chaieb, A. Bouyanzer, B. Hammouti, and M. Benkaddour, “Inhibition of the corrosion of steel in 1 M HCl by eugenol derivatives,” Applied Surface Science, vol. 246, no. 1–3, pp. 199–206, 2005.
[20]  P. C. Okafor and E. E. Ebenso, “Inhibitive action of Carica papaya extracts on the corrosion of mild steel in acidic media and their adsorption characteristics,” Pigment and Resin Technology, vol. 36, no. 3, pp. 134–140, 2007.
[21]  J. Buchweishaija and G. S. Mhinzi, “Natural products as a source of environmentally friendly corrosion inhibitors: the case of gum exudate from Acacia seyal var. seyal,” Portugaliae Electrochimica Acta, vol. 26, no. 3, pp. 257–265, 2008.
[22]  P. B. Raja and M. G. Sethuraman, “Inhibition of corrosion of mild steel in sulphuric acid medium by Calotropis procera,” Pigment and Resin Technology, vol. 38, no. 1, pp. 33–37, 2009.
[23]  M. Shyamala and A. Arulanantham, “Corrosion inhibition effect of centella asiatica (Vallarai) on mild steel in hydrochloric acid,” Asian Journal of Chemistry, vol. 21, no. 8, pp. 6102–6110, 2009.
[24]  C. Anca, M. Ioana, D. I. Vaireanu, L. Iosif, L. Carmen, and C. Simona, “Estimation of inhibition efficiency for carbon steel corrosion in acid media by using natural plant extracts,” Revista de Chimie, vol. 60, no. 11, pp. 1175–1180, 2009.
[25]  P. C. Okafor, I. E. Uwah, O. O. Ekerenam, and U. J. Ekpe, “Combretum bracteosum extracts as eco-friendly corrosion inhibitor for mild steel in acidic medium,” Pigment and Resin Technology, vol. 38, no. 4, pp. 236–241, 2009.
[26]  P. C. Okafor, M. E. Ikpi, I. E. Uwah, E. E. Ebenso, U. J. Ekpe, and S. A. Umoren, “Inhibitory action of Phyllanthus amarus extracts on the corrosion of mild steel in acidic media,” Corrosion Science, vol. 50, no. 8, pp. 2310–2317, 2008.
[27]  P. C. Okafor, E. E. Ebenso, and U. J. Ekpe, “Azadirachta indica extracts as corrosion inhibitor for mild steel in acid medium,” International Journal of Electrochemical Science, vol. 5, no. 7, pp. 978–993, 2010.
[28]  N. O. Eddy and E. E. Ebenso, “Adsorption and inhibitive properties of ethanol extracts of Musa sapientum peels as a green corrosion inhibitor for mild steel in H2SO4,” African Journal of Pure and Applied Chemistry, vol. 2, pp. 046–054, 2008.
[29]  A. Sharmila, A. A. Prema, and P. A. Sahayaraj, “Influence of Murraya koenigii (curry leaves) extract on the corrosion inhibition of carbon steel in HCL solution,” Rasayan Journal of Chemistry, vol. 3, no. 1, pp. 74–81, 2010.
[30]  A. M. Al-Turkustani, S. T. Arab, and L. S. S. Al-Qarni, “Medicago Sative plant as safe inhibitor on the corrosion of steel in 2.0?M H2SO4 solution,” Journal of Saudi Chemical Society, vol. 15, no. 1, pp. 73–82, 2011.
[31]  M. Lebrini, F. Robert, A. Lecante, and C. Roos, “Corrosion inhibition of C38 steel in 1M hydrochloric acid medium by alkaloids extract from Oxandra asbeckii plant,” Corrosion Science, vol. 53, no. 2, pp. 687–695, 2011.
[32]  M. Shyamala and P. K. Kasthuri, “The inhibitory action of the extracts of Adathoda vasica, Eclipta alba, and Centella asiatica on the corrosion of mild steel in hydrochloric acidMedium: a comparative study,” International Journal of Corrosion, vol. 2012, Article ID 852827, 13 pages, 2012.
[33]  M. Shyamala and P. K. Kasthuri, “A comparative study of the inhibitory effect of the extracts of Ocimum sanctum, Aegle marmelos, and Solanum trilobatum on the corrosion of mild steel in hydrochloric acid medium,” International Journal of Corrosion, vol. 2011, Article ID 129647, 11 pages, 2011.
[34]  M. Lebrini, F. Robert, and C. Roos, “Inhibition effect of alkaloids extract from Annona squamosa plant on the corrosion of C38 steel in normal hydrochloric acid medium,” International Journal of Electrochemical Science, vol. 5, no. 11, pp. 1698–1712, 2010.
[35]  N. O. Eddy and A. O. Odiongenyi, “Corrosion inhibition and adsorption properties of ethanol extract of Heinsia crinata on mild steel in H2SO4,” Pigment and Resin Technology, vol. 39, no. 5, pp. 288–295, 2010.
[36]  E. E. Oguzie, C. K. Enenebeaku, C. O. Akalezi, S. C. Okoro, A. A. Ayuk, and E. N. Ejike, “Adsorption and corrosion-inhibiting effect of Dacryodis edulis extract on low-carbon-steel corrosion in acidic media,” Journal of Colloid and Interface Science, vol. 349, no. 1, pp. 283–292, 2010.
[37]  R. Saratha and V. G. Vasudha, “Emblica Officinalis (Indian Gooseberry) leaves extract as corrosion inhibitor for mild steel in 1N HCL medium,” E-Journal of Chemistry, vol. 7, no. 3, pp. 677–684, 2010.
[38]  S. Subhashini, R. Rajalakshmi, A. Prithiba, and A. Mathina, “Corrosion mitigating effect of Cyamopsis Tetragonaloba seed extract on mild steel in acid medium,” E-Journal of Chemistry, vol. 7, no. 4, pp. 1133–1137, 2010.
[39]  M. A. Quraishi, “Investigation of some green compounds as corrosion and scale inhibitors for cooling systems,” Corrosion, vol. 55, no. 5, pp. 493–497, 1999.
[40]  A. Minhaj, P. A. Saini, M. A. Quraishi, and I. H. Farooqi, “A study of natural compounds as corrosion inhibitors for industrial cooling systems,” Corrosion Prevention and Control, vol. 46, no. 2, pp. 32–38, 1999.
[41]  I. H. Farooqi, M. A. Quraishi, and P. A. Saini, “Corrosion prevention of mild steel in 3% NaCl water by some naturally-occurring substances,” Corrosion Prevention and Control, vol. 46, no. 4, pp. 93–96, 1999.
[42]  I. H. Farooqi, M. A. Nasir, and M. A. Quraishi, “Environmentally-friendly inhibitor formulations for industrial cooling systems,” Corrosion Prevention and Control, vol. 44, no. 5, pp. 129–134, 1997.
[43]  M. A. Quraishi, A. Singh, V. K. Singh, D. K. Yadav, and A. K. Singh, “Green approach to corrosion inhibition of mild steel in hydrochloric acid and sulphuric acid solutions by the extract of Murraya koenigii leaves,” Materials Chemistry and Physics, vol. 122, no. 1, pp. 114–122, 2010.
[44]  A. Singh, I. Ahamad, V. K. Singh, and M. A. Quraishi, “Inhibition effect of environmentally benign Karanj (Pongamia pinnata) seed extract on corrosion of mild steel in hydrochloric acid solution,” Journal of Solid State Electrochemistry, vol. 15, pp. 1087–1097, 2011.
[45]  A. Singh, V. K. Singh, and M. A. Quraishi, “Aqueous extract of Kalmegh (Andrographis paniculata) leaves as green inhibitor for mild steel in hydrochloric acid solution,” International Journal of Corrosion, vol. 2010, Article ID 275983, 10 pages, 2010.
[46]  A. Singh, V. K. Singh, and M. A. Quraishi, “Effect of fruit extracts of some environmentally benign green corrosion inhibitors on corrosion of mild steel in hydrochloric acid solution,” Journal of Materials and Environmental Science, vol. 1, no. 3, pp. 162–174, 2010.
[47]  A. Singh, V. K. Singh, and M. A. Quraishi, “Inhibition effect of environmentally benign Kuchla (Strychnos nuxvomica) seed extract on corrosion of mild steel in hydrochloric acid solution,” Rasayan Journal of Chemistry, vol. 3, pp. 811–824, 2010.
[48]  A. Singh, I. Ahamad, D. K. Yadav, V. K. Singh, and M. A. Quraishi, “The effect of environmentally benign fruit extract of Shahjan (Moringa oleifera) on the corrosion of mild steel in hydrochloric acid solution,” Chemical Engineering Communications, vol. 199, no. 1, pp. 63–77, 2012.
[49]  C. Y. Chao, L. F. Lin, and D. D. Macdonald, “A point defect model for anodic passive films,” Journal of the Electrochemical Society, vol. 128, no. 6, pp. 1187–1194, 1981.
[50]  I. M. Ritchie, S. Bailey, and R. Woods, “Metal-solution interface,” Advances in Colloid and Interface Science, vol. 80, no. 3, pp. 183–231, 1999.
[51]  G. N. Mu, T. P. Zhao, M. Liu, and T. Gu, “Effect of metallic cations on corrosion inhibition of an anionic surfactant for mild steel,” Corrosion, vol. 52, no. 11, pp. 853–856, 1996.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133