全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Determination of Susceptibility to Intergranular Corrosion of UNS 31803 Type Duplex Stainless Steel by Electrochemical Reactivation Method: A Comparative Study

DOI: 10.1155/2012/478508

Full-Text   Cite this paper   Add to My Lib

Abstract:

In the present study as in our previous studies (Arikan and Doruk, 2008 and Arikan et al., 2012), similar specimens taken from a hot rolled cylindrical duplex stainless steel (DSS) bar with 22% Cr grade were solution annealed at 1050°C and then aged at 800°C from 100 to 31622?min for sensitization treatment. Double loop electrochemical potentiodynamic reactivation and standard weight loss immersion acid tests were conducted. The solution annealed samples were found unsensitized. The samples aged for 100?min were less sensitized whereas samples aged for 316?min and more time were sensitized. The degree of sensitization (DOS) can be attributed to higher contribution of chromium and molybdenum depleted areas that result from intermetallic phases. However, especially the samples aged from 3162 to 31622?min have revealed chromium replenishment. Consequently, the degree of sensitization was lowered in comparison to the results obtained in previous studies. 1. Introduction Generally, duplex stainless steels (DSS) are Fe-Cr-Ni alloys having an approximately volumetric fraction of 50% ferrite and 50% austenite in their microstructures. Their main feature is that they compromise favorable corrosion resistance of austenitic stainless steels with good mechanical properties [1–4]. However, duplex stainless steels are susceptible to the precipitation of some phases that affect both the corrosion and the mechanical properties. These phases may be formed during the solidification of the alloy or in subsequent heat treatments or plastic deformation processes or even due to ageing processes during its use, causing a marked effect upon the workability and the useful life of the material [5]. One of the possible phases to be formed is the sigma phase ( ), a hard and brittle intermetallic compound, rich in Cr and Mo, which is formed from ferrite [6]. This phase has deleterious effect upon both mechanical and the corrosion properties [7]. In most of the duplex stainless steels sigma phase is formed between 600°C and 950°C and its precipitation becomes faster between 700°C and 900°C. The embrittlement of some alloys due to the sigma phase precipitation may occur in very short times, of the order of 3?min [7–9]. Brandi and Padilha [10] and Maehara et al. [11] found the sigma phase precipitation in duplex stainless steels that as the amount of sigma phase increases the amount of ferrite decreases, until its total consumption. According to this result it was concluded that the sigma phase is formed from the ferrite. The proposed mechanism for this formation [10, 11] is the

References

[1]  A. Wensley and C. Reid, “Duplex stainless steels in the pulp and paper industry,” in Proceedings of the Duplex Stainless Steels, J. Charles and S. Bernhardsson, Eds., vol. 1 of Les Editions de Physique, pp. 1099–1110, 1992.
[2]  J. Husbands and P. K. Whitkraft, “CORROSION/91,” Paper 171, NACE, Houston, Tex, USA, 1991.
[3]  D. J. A. Fruytier, in Duplex Stainless Steels '91, J. Charles and S. Bernhardsson, Eds., Les Editions de Physique, p. 499, 1992.
[4]  P. Jolly, Bulletin du Cercle d'Etudes des Metaux, vol. XII-5, no. 5, p. 317, 1973.
[5]  D. Y. Kobayashi and S. Wolynec, “Evaluation of the low corrosion resistant phase formed during the sigma phase precipitation in duplex stainless steels,” Materials Research, vol. 2, no. 4, p. 239, 1999.
[6]  J. S. Kim and H. S. Kwon, “Effects of tungsten on corrosion and kinetics of sigma phase formation of 25% chromium duplex stainless steels,” Corrosion, vol. 55, no. 5, pp. 512–521, 1999.
[7]  G. M. Gordon, “Physical Metallurgy of Fe-Cr-Ni Alloys,” in Stress Corrosion Cracking and Hydrogen Embrittlement Iron Base Alloys, R. W. Staehle, Ed., pp. 893–945, NACE, Houston, Tex, USA, 1977.
[8]  E. O. Hall and S. H. Algie, “The Sigma phase,” Metallurgical Reviews, vol. 11, pp. 61–88, 1966.
[9]  T. A. Debold, “Duplex stainless steel-microstructure and properties,” Journal of metals, vol. 41, no. 3, pp. 12–15, 1989.
[10]  S. D. Brandi and A. F. Padilha, in Proceedings of 2nd Brazilian Seminars on Stainless Steels-(INOX '90), pp. 135–152, ABM, Sao Paulo, Brazil, 1990.
[11]  Y. Maehara, M. Koike, N. Jujiro, and T. Kunitake, Transactions of the Iron and Steel Institute of Japan, vol. 23, no. 3, p. 669, 1983.
[12]  P. Jolly and J. Hochmann, “Structural changes in austenitic-ferritic stainless steel on holding between 600 and 1150?C,” Memoires et Etudes Scientifiques de la Revue de Metallurgie, vol. 70, no. 2, pp. 117–124, 1973.
[13]  J. M. Vitek and S. A. David, “Sigma phase transformation in austenitic stainless steels,” Welding Journal, vol. 65, no. 4, p. 106, 1986.
[14]  “Duplex stainless steel: a tale of two phases,” in Proceedings of the Duplex Stainless Steels Conference, H. D. Solomon, T. M. Devine, and R. A. Lula, Eds., p. 693, ASM, Metals Park, Ohio, USA, 1984.
[15]  C. H. Shek, K. W. Wong, and J. K. Lai, “Review of temperature indicators and the use of duplex stainless steels for life assessment,” Materials Science and Engineering R, vol. 19, no. 5-6, pp. 153–200, 1997.
[16]  M. E. Wilms, V. J. Gadgil, J. M. Krougman, and B. H. Kolster, “Effect of σ-phase precipitation at 800°C on the mechanical properties of a high alloyed duplex stainless steel,” Materials at High Temperatures, vol. 9, no. 3, pp. 160–166, 1991.
[17]  T. H. Chen and J. R. Yang, Materials Science and Engineering A, vol. 11, p. 28, 2001.
[18]  N. Lopez, M. Cid, and M. Puiggali, “Influence of σ-phase on mechanical properties and corrosion resistance of duplex stainless steels,” Corrosion Science, vol. 41, no. 8, pp. 1615–1631, 1999.
[19]  R. Francis, “Discussion on: influence of Sigma phase on general and pitting corrosion resistance of 2205 duplex stainless steel by J H Potgieter,” British Corrosion Journal, vol. 27, no. 4, pp. 319–320, 1992.
[20]  F. Egan, Stainless Steel World, vol. 9, no. 10, p. 61, 1997.
[21]  R. N. Gunn, The Twi Journal, vol. 7, no. 1, pp. 5–45, 1998.
[22]  J. E. Truman and K. R. Pirt, in Duplex Stainless Steel, R. A. Lula, Ed., pp. 113–142, ASM, Metals Park, Ohio, USA, 1983.
[23]  K. N. Adhe, V. Kain, K. Madangopal, and H. S. Gadiyar, “Influence of sigma-phase formation on the localized corrosion behavior of a duplex stainless steel,” Journal of Materials Engineering and Performance, vol. 5, no. 4, pp. 500–506, 1996.
[24]  M. E. Wilms, V. J. Gadgil, J. M. Krougman, and F. P. Ijsseling, “The effect of σ-phase precipitation at 800°C on the corrosion resistance in sea-water of a high alloyed duplex stainless steel,” Corrosion Science, vol. 36, no. 5, pp. 871–881, 1994.
[25]  ASTM A262-02: Standard Practices for Detecting Susceptibility to Intergranular Attack in Austenitic Stainless Steels.
[26]  ASTM G108-94: Standard Test Method for Electrochemical Reactivation (EPR) for Detecting Sensitization of AISI Type 304 and 304L Stainless Steels.
[27]  M. E. Arikan and M. Doruk, “Determination of susceptibility to intergranular corrosion of UNS 31803 type duplex stainless steel by electrochemical reactivation method,” Turkish Journal of Engineering and Environmental Sciences, vol. 32, no. 6, pp. 323–335, 2008.
[28]  M. E. Arikan, R. Arikan, and M. Doruk, “Determination of susceptibility to intergranular corrosion of UNS 31803 type duplex stainless steel by electrochemical reactivation method,” International Journal of Corrosion, vol. 2012, Article ID 651829, 10 pages, 2012.
[29]  ASTM A923-03: Standard Test Methods for Detecting Detrimental Intermetallic Phase In Duplex Austenitic / Ferritic Stainless Steels.
[30]  A. P. Majidi and M. A. Streicher, “Potentiodynamic reactivation method for detecting sensitization in alsl 304 and 304L stainless steels,” Corrosion, vol. 40, no. 8, pp. 393–408, 1984.
[31]  A. P. Majidi and M. A. Streicher, Paper presented at NACE, CORROSION/84, no. 261, 1984.
[32]  “Duplex stainless steel: a tale of two phases,” in Proceedings of the Duplex Stainless Steels, H. D. Solomon, T. M. Devine, and R. A. Lula, Eds., p. 693, Metals Park, Ohio, USA, 1984.
[33]  E. L. Hall and C. L. Briant, “Chromium depletion in the vicinity of carbides in sensitized austenitic stainless steels,” Metallurgical and Materials Transactions A, vol. 15, no. 5, pp. 793–811, 1984.
[34]  R. N. Wright, in Toughness of Ferritic Stainless Steels, R. A. Rula, Ed., vol. 706, p. 2, ASTM-Special Technical Publication, West Conshohocken, Pa, USA, 1979.
[35]  C. J. Park and H. S. Kwon, “Effects of aging at 475°C on corrosion properties of tungsten-containing duplex stainless steels,” Corrosion Science, vol. 44, no. 12, pp. 2817–2830, 2002.
[36]  A. Legat and V. Dolecek, “Chaotic analysis of electrochemical noise measured on stainless steel,” Journal of the Electrochemical Society, vol. 142, no. 6, pp. 1851–1858, 1995.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133