全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于数据驱动方法的风电机组功率优化

DOI: 10.7500/AEPS20160426008

Keywords: 风电机组 风电 神经网络 功率优化

Full-Text   Cite this paper   Add to My Lib

Abstract:

风电机组功率与风电产能息息相关,为提高风电产能及其收益,有必要对风电机组功率进行优化。应用前馈神经网络,从历史运行数据中挖掘风电机组功率与风速和控制量间的函数关系,进而提出逐点优化策略和聚类优化策略,用于实现风电机组功率优化,即在已知测量风速时,优化确定风电机组控制量,实现风电机组功率最大化。后者优化策略在前者优化策略基础上,应用K均值聚类方法聚类风速,从而降低优化计算复杂度,利于风电机组功率的实时优化。定义平均功率增益、功率增益百分比和功率增益概率三种指标用于测度功率优化效果。将两种优化策略应用至H56-850型风电机组,将优化后的风电机组功率与历史运行记录进行对比,结果表明,两种优化策略均可有效提高风电机组功率输出。此外,聚类中心数为5的聚类优化策略,能以较低的优化计算复杂度,达到与逐点优化策略相近的优化效果

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133