全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于IL-HMMs预测模型的地下水埋深预测研究

Keywords: 地下水埋深 磴口县 增量学习 IL-HMMs模型

Full-Text   Cite this paper   Add to My Lib

Abstract:

以西北干旱典型县域磴口县为研究区,基于增量学习的改进隐马尔可夫预测模型(IL-HMMs),对区域地下水埋深进行了预测研究。为检验IL-HMMs模型预测效果,将模型预测结果与2013年长观井的实测数据进行了比较;同时为检验模型的优劣性,与未经增量学习的隐马尔可夫模型(HMMs)、加权马尔可夫链(WMCP)和BP神经网络(BP neural network,BPNN)预测模型的预测结果进行了比较。结果表明:与其他几种预测模型相比,IL-HMMs模型预测精度显著提高,误差更小,有较好的鲁棒性。并使用IL-HMMs模型对2018年地下水埋深进行了预测,预测结果表明,2018年地下水年平均埋深略有增加、局部区域地下水埋深增量加剧。基于IL-HMMs模型的地下水埋深预测具有很好稳定性的同时对新数据加入又有很好的鲁棒性,可为地下水埋深动态预测提供思路与方法补充,为区域地下水资源开发利用和保护提供重要依据

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133