全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
包装工程  2018 

基于区域自适应模型耦合向量约束的图像匹配算法

DOI: 10.19554/j.cnki.1001-3563.2018.23.031

Keywords: 图像匹配 区域自适应模型 欧氏度量 Hamming距离 向量约束规则 匹配特征点优化

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的 为了解决提高图像匹配算法的匹配精度与鲁棒性。方法 设计基于区域自适应模型耦合向量约束规则的图像匹配算法。首先引入采用上下文信息的显著性分析方法,提取图像的显著区域和非显著区域。根据区域的显著性特征构造区域自适应模型,用以动态调整FAST算法中的灰度阈值,提取图像中的特征点。然后,通过欧氏度量将特征点邻域内的点分为长、短点集;通过长点集生成特征方向,利用短点集生成特征向量,以获取特征点的描述符。最后,对特征点之间的Hamming距离进行度量,实现特征点的匹配。利用匹配特征点组成的向量建立向量约束规则,对匹配特征点进行优化,完成图像匹配。结果 实验结果表明,与当前图像匹配技术相比,所提算法具有更高的鲁棒性与匹配正确度,当目标旋转角度达到100°时,其匹配准确率仍可达到88.95%。结论 所提算法具有良好的适应性,在遇到几何变换时,具有较好的匹配精度,在图像处理、信息安全等领域具有良好的参考价值

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133