全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于机器学习的落叶松毛虫发生面积预测模型

DOI: 10.13332/j.1000-1522.20160205

Keywords: 虫害预测,预测模型,多元线性回归,机器学习

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要 落叶松毛虫为我国主要害虫之一,其发生严重影响了我国林木生长和森林资源的安全。因此,及时准确地对落叶松毛虫虫害发生趋势进行预测、预报十分必要。虫害的发生受到多种因素的影响,存在复杂的非线性关系,传统的预测方法大多为基于线性的预测,导致其预测效果不够理想。本研究选取当年3月中旬的总蒸发量、上年7月上旬的平均最低气温、当年3月下旬的极端最低气温以及上年11月上旬的平均风速作为自变量,虫害发生面积作为因变量,利用多层前馈神经网络(MLFN)、广义回归神经网络(GRNN)以及支持向量机(SVM)3种机器学习算法对落叶松毛虫发生面积进行预测,并将3种方法的预测结果与传统多元线性回归预测方法相比较。结果表明,机器学习的预测效果均在很大程度上优于多元线性回归预测,并且在3种机器学习算法中,SVM模型的预测效果最好,在30%容忍度下其预测精度可以达到100%,并且该模型还有较低的RMSE值(0.077)和较短的训练时间(1s)。这表明,机器学习可以应用于生产实际并有效预测虫害发生面积,尤其是SVM模型可以作为一种很好的虫害发生预测手段

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133