全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

Local BDNF Delivery to the Injured Cervical Spinal Cord using an Engineered Hydrogel Enhances Diaphragmatic Respiratory Function

DOI: 10.1523/JNEUROSCI.3084-17.2018

Full-Text   Cite this paper   Add to My Lib

Abstract:

We developed an innovative biomaterial-based approach to repair the critical neural circuitry that controls diaphragm activation by locally delivering brain-derived neurotrophic factor (BDNF) to injured cervical spinal cord. BDNF can be used to restore respiratory function via a number of potential repair mechanisms; however, widespread BDNF biodistribution resulting from delivery methods such as systemic injection or lumbar puncture can lead to inefficient drug delivery and adverse side effects. As a viable alternative, we developed a novel hydrogel-based system loaded with polysaccharide-BDNF particles self-assembled by electrostatic interactions that can be safely implanted in the intrathecal space for achieving local BDNF delivery with controlled dosing and duration. Implantation of BDNF hydrogel after C4/C5 contusion-type spinal cord injury (SCI) in female rats robustly preserved diaphragm function, as assessed by in vivo recordings of compound muscle action potential and electromyography amplitudes. However, BDNF hydrogel did not decrease lesion size or degeneration of cervical motor neuron soma, suggesting that its therapeutic mechanism of action was not neuroprotection within spinal cord. Interestingly, BDNF hydrogel significantly preserved diaphragm innervation by phrenic motor neurons (PhMNs), as assessed by detailed neuromuscular junction morphological analysis and retrograde PhMN labeling from diaphragm using cholera toxin B. Furthermore, BDNF hydrogel enhanced the serotonergic axon innervation of PhMNs that plays an important role in modulating PhMN excitability. Our findings demonstrate that local BDNF hydrogel delivery is a robustly effective and safe strategy to restore diaphragm function after SCI. In addition, we demonstrate novel therapeutic mechanisms by which BDNF can repair respiratory neural circuitry. SIGNIFICANCE STATEMENT Respiratory compromise is a leading cause of morbidity and mortality following traumatic spinal cord injury (SCI). We used an innovative biomaterial-based drug delivery system in the form of a hydrogel that can be safely injected into the intrathecal space for achieving local delivery of brain-derived neurotrophic factor (BDNF) with controlled dosing and duration, while avoiding side effects associated with other delivery methods. In a clinically relevant rat model of cervical contusion-type SCI, BDNF hydrogel robustly and persistently improved diaphragmatic respiratory function by enhancing phrenic motor neuron (PhMN) innervation of the diaphragm neuromuscular junction and by increasing serotonergic

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133