A particle-laden flow inside solid gas cyclones has been studied using computational fluid dynamics (CFD). The effects of high temperatures and different particle loadings have been investigated. The Reynolds stress (RSM) model-predicted results, in the case of pure gas, are within engineering accuracy even at high temperatures. Using the granular mixture model for the cases of particle-laden flow, discrepancies occurred at relatively high loadings (up to 0.5?kg/m3). Since the pressure drop is strongly related to the friction inside the cyclone body, the concept of entropy generation has been employed to detect regions of high frictional effects. Friction has been observed to be important at the vortex finder wall, the bottom of the conical-part wall, and the interface separating the outer and the core streams. The discrepancies between the present numerical simulation and the experimental results taken from the existing literature, which are caused by the mixture and turbulence models simplifying assumptions, are discussed in this paper. 1. Introduction Solid gas cyclone separators are known to have low cost, they are easy to operate, simple to manufacture, and relatively easy to maintain because of lack of moving parts. This has made them the best devices used in industries where the separation of solid particles from a gaseous phase is crucial. Cyclone separators are used in several industrial applications such as cement industry, pressurized fluidized bed combustors, and fluidized catalytic cracking processes. The highly swirling flow generated inside the cyclone causes the particles to be ejected under the effect of the centrifugal force towards the outer wall. On the other hand, the generation of high swirl intensities requires high energy consumption (high pressure drop) [1–3]. The design of cyclones involves thus two conflicting and simultaneous requirements of minimizing the pressure drop and maximizing the separation efficiency. The pressure drop and separation efficiency are thus important for successful design and need to be predicted with the required engineering accuracy. Theoretical studies have established semiempirical models for the prediction of single-phase pressure drop [4–6]. The main parameters used are the geometry of the cyclone and a characteristic tangential velocity component. The single-phase reasoning has been developed to take into account the effects of the solid loading and the temperature. The influence of temperature is introduced via the density and viscosity in the Reynolds number while the loading effect is usually
References
[1]
Y. Zhu and K. W. Lee, “Experimental study on small cyclones operating at high flowrates,” Journal of Aerosol Science, vol. 30, no. 10, pp. 1303–1315, 1999.
[2]
T. Chmielniak and A. Bryczkowski, “Method of calculation of new cyclone-type separator with swirling baffle and bottom take off of clean gas—part I: theoretical approach,” Chemical Engineering and Processing, vol. 39, no. 5, pp. 441–448, 2000.
[3]
P. A. Funk, S. E. Hughs, and G. A. Holt, “Entrance velocity optimization for modified dust cyclones,” Journal of Cotton Science, vol. 4, no. 3, pp. 178–182, 2000.
[4]
J. Dirgo and D. Leith, “Design of cyclone separators,” in Encyclopedia of Fluid Mechanics, 4: Gas-Solid Flows, N. P. Cheremisinoff, Ed., pp. 1281–1306, Gulf Publishing, Houston, Tex, USA, 1986.
[5]
C. Cortés and A. Gil, “Modeling the gas and particle flow inside cyclone separators,” Progress in Energy and Combustion Science, vol. 33, no. 5, pp. 409–452, 2007.
[6]
A. C. Hoffmann and L. E. Stein, Gas Cyclones and Swirl Tubes, Springer, Berlin, Germany, 2nd edition, 2008.
[7]
J. Chen and M. Shi, “A universal model to calculate cyclone pressure drop,” Powder Technology, vol. 171, no. 3, pp. 184–191, 2007.
[8]
F. Boysan, W. H. Ayer, and J. Swithenbank, “Fundamental mathematical modeling approach to cyclone design,” Transactions of the Institution of Chemical Engineering, vol. 60, pp. 222–230, 1982.
[9]
W. D. Griffiths and F. Boysan, “Computational fluid dynamics (CFD) and empirical modelling of the performance of a number of cyclone samplers,” Journal of Aerosol Science, vol. 27, no. 2, pp. 281–304, 1996.
[10]
H. F. Meier and M. Mori, “Gas-solid flow in cyclones: the Eulerian-Eulerian approach,” Computers and Chemical Engineering, vol. 22, no. 1, pp. S641–S644, 1998.
[11]
J. Gimbun, T. G. Chuah, T. S. Y. Choong, and A. Fakhru'l-Razi, “Prediction of the effects of cone tip diameter on the cyclone performance,” Journal of Aerosol Science, vol. 36, no. 8, pp. 1056–1065, 2005.
[12]
J. Gimbun, T. G. Chuah, A. Fakhru'l-Razi, and T. S. Y. Choong, “The influence of temperature and inlet velocity on cyclone pressure drop: a CFD study,” Chemical Engineering and Processing, vol. 44, no. 1, pp. 7–12, 2005.
[13]
J. Gimbun, “CFD simulation of aerocyclone hydrodynamics and performance at extreme temperature,” Engineering Applications of Computational Fluid Mechanics, vol. 2, pp. 22–29, 2008.
[14]
B. Wang, D. L. Xu, K. W. Chu, and A. B. Yu, “Numerical study of gas-solid flow in a cyclone separator,” Applied Mathematical Modelling, vol. 30, no. 11, pp. 1326–1342, 2006.
[15]
F. Qian, J. Zhang, and M. Zhang, “Effects of the prolonged vertical tube on the separation performance of a cyclone,” Journal of Hazardous Materials, vol. 136, no. 3, pp. 822–829, 2006.
[16]
H. Shalaby, K. Wozniak, and G. Wozniak, “Numerical calculation of particle-laden cyclone separator flow using LES,” Engineering Applications of Computational Fluid Mechanics, vol. 2, pp. 382–392, 2008.
[17]
V. A. Ivanov, F. J. Sarasola, and S. A. Vasquez, “Multiphase mixture model applied to cyclone separators and bubble columns,” American Society of Mechanical Engineers, PressureVessels and Piping Division (Publication) PVP, vol. 397, pp. 317–324, 1999.
[18]
M. Narasimha, M. S. Brennan, and P. N. Holtham, “A review of CFD modelling for performance predictions of hydrocyclone,” Engineering Applications of Computational Fluid Mechanics, vol. 1, pp. 109–125, 2007.
[19]
F. Qian, Z. Huang, G. Chen, and M. Zhang, “Numerical study of the separation characteristics in a cyclone of different inlet particle concentrations,” Computers and Chemical Engineering, vol. 31, no. 9, pp. 1111–1122, 2007.
[20]
J. J. Derksen, H. E. A. Van Den Akker, and S. Sundaresan, “Two-way coupled large-eddy simulations of the gas-solid flow in cyclone separators,” AIChE Journal, vol. 54, no. 4, pp. 872–885, 2008.
[21]
M. Manninen, V. Taivassalo, and S. Kallio, On the Mixture Model for Multiphase Flow, Valtion Teknillinen Tutkimuskeskus, Espoo, Finland, 1996.
[22]
ANSYS, Inc., “Fluent User Guide and Fluent Theory Guide, version 12.0,” 2009.
[23]
M. Syamlal and T. J. O'Brien, “Computer simulation of bubbles in a fluidized bed,” AICHE Symposium Series, vol. 85, no. 270, pp. 22–31, 1989.
[24]
J. Ding and D. Gidaspow, “Bubbling fluidization model using kinetic theory of granular flow,” AIChE Journal, vol. 36, no. 4, pp. 523–538, 1990.
[25]
C. K. K. Lun, S. B. Savage, D. J. Jeffrey, and N. Chepurniy, “Kinetic theories for granular flow: inelastic particles in Couette flow and slightly inelastic particles in a general flowfield,” Journal of Fluid Mechanics, vol. 140, pp. 223–256, 1984.
[26]
C. Crowe, M. Sommerfeld, and Y. Tsuji, Multiphase Flows with Droplets and Particles, CRC Press, New York, NY, USA, 1998.
[27]
D. Gidaspow, R. Bezburuah, and J. Ding, “Hydrodynamics of circulating fluidized beds, kinetic theory approach,” in Proceedings of the 7th Engineering Foundation Conference on Fluidization, pp. 75–82, 1992.
[28]
J. M. Dalla Valle, Micromeritics, Pitman, London, UK, 1948.
[29]
J. R. Richardson and W. N. Zaki, “Sedimentation and fluidization: part I,” Transactions of the Institution of Chemical Engineers, vol. 32, pp. 35–53, 1954.
[30]
B. E. Launder, G. J. Reece, and W. Rodi, “Progress in the development of a Reynolds-stress turbulence closure,” Journal of Fluid Mechanics, vol. 68, no. 3, pp. 537–566, 1975.
[31]
B. E. Launder and D. B. Spalding, “The numerical computation of turbulent flows,” Computer Methods in Applied Mechanics and Engineering, vol. 3, no. 2, pp. 269–289, 1974.
[32]
F. Boysan, J. Swithenbank, and W. H. Ayers, “Mathematical modelling of gas-particle flows in cyclone separators,” in Encyclopedia of Fluid Mechanics, Vol. 4, N. P. Cheremisinoff, Ed., pp. 1307–1329, Gulf Publishing, Houston, Tex, USA, 1986.
[33]
T. H. Ko, “Numerical analysis of entropy generation and optimal Reynolds number for developing laminar forced convection in double-sine ducts with various aspect ratios,” International Journal of Heat and Mass Transfer, vol. 49, no. 3-4, pp. 718–726, 2006.
[34]
A. P. Baskakov, V. N. Dolgov, and Y. M. Goldobin, “Aerodynamics and heat transfer in cyclones with particle-laden gas flow,” Experimental Thermal and Fluid Science, vol. 3, no. 6, pp. 597–602, 1990.
[35]
L. Xiaodong, Y. Jianhua, C. Yuchun, N. Mingjiang, and C. Kefa, “Numerical simulation of the effects of turbulence intensity and boundary layer on separation efficiency in a cyclone separator,” Chemical Engineering Journal, vol. 95, no. 1, pp. 235–240, 2003.
[36]
J. J. Derksen, S. Sundaresan, and H. E. A. van den Akker, “Simulation of mass-loading effects in gas-solid cyclone separators,” Powder Technology, vol. 163, no. 1-2, pp. 59–68, 2006.