There are two classes of mixing sensitive reactions: competitive-consecutive and competitive-parallel. The yield of desired product from these coupled reactions depends on how fast the reactants are brought together. Recent experimental results have suggested that the mixing effect may depend strongly on the stoichiometry of the reactions. To investigate this, a 1D, dimensionless, reaction-diffusion model at the micromixing scale was developed. Assuming constant mass concentration and mass diffusivities, systems of PDE's were derived on a mass fraction basis for both types of reactions. Two dimensionless reaction rate ratios and a single general Damk?hler number emerged from the analysis. The resulting dimensionless equations were used to investigate the effects of mixing, reaction rate ratio, and reaction stoichiometry. As expected, decreasing either the striation thickness or the dimensionless rate ratio maximizes yield, the reaction stoichiometry has a considerable effect on yield, and all three variables interact strongly. 1. Introduction Mixing and apparent reaction rate are intrinsically related: reactions involving multiple reactants cannot occur without the reactants being contacted intimately at a molecular level. In a reactor, reactants are added at the macro- or meso-scale. For the reaction to occur, the pure reactants need to be homogenized at the molecular scale so that molecules can collide. If the mixing is fast enough, the intrinsic chemical kinetics governs the rate of production of new species. This requires a reduction of scale and of differences in concentration, which is the very definition of mixing as it pertains to chemical reactions. In two known classes of reaction, the progress of the reaction depends heavily on how quickly the reactants are brought together. These reactions consist of two or more competitive reactions either occurring in parallel, where two or more reactions involving the same reactants take place at the same time, or in a consecutive sequence, where the desired product of one of the reactions participates in a second undesired reaction with the original reactants. Both types of reaction schemes can involve considerable production of unwanted by-product despite the desired reaction being as much as a million times faster than the undesired reaction. Typical representations of these reaction schemes are given in Table 1. For both cases, , is the desired product, and is the undesired by-product. Therefore, for a perfectly homogeneous mixture of reactants present in a stoichiometric ratio of one ( ), the yield
References
[1]
J. Baldyga and J. R. Bourne, Turbulent Mixing and Chemical Reactions, Wiley, Chichester, UK, 1999.
[2]
G. K. Patterson, E. L. Paul, S. M. Kresta, and A. W. Etchells III, “Mixing and chemical reactions,” in Handbook of Industrial Mixing—Science and Practice, E. L. Paul, V. A. Atiemo-Obeng, and S. M. Kresta, Eds., Wiley, Hoboken, NJ, USA, 2004.
[3]
J. Baldyga and J. R. Bourne, “Interactions between mixing on various scales in stirred tank reactors,” Chemical Engineering Science, vol. 47, no. 8, pp. 1839–1848, 1992.
[4]
J. Badyga, J. R. Bourne, and S. J. Hearn, “Interaction between chemical reactions and mixing on various scales,” Chemical Engineering Science, vol. 52, no. 4, pp. 457–466, 1997.
[5]
S. M. Cox, M. J. Clifford, and E. P. L. Roberts, “A two-stage reaction with initially separated reactants,” Physica A, vol. 256, no. 1-2, pp. 65–86, 1998.
[6]
M. J. Clifford, E. P. L. Roberts, and S. M. Cox, “The influence of segregation on the yield for a series-parallel reaction,” Chemical Engineering Science, vol. 53, no. 10, pp. 1791–1801, 1998.
[7]
S. M. Cox, “Chaotic mixing of a competitive-consecutive reaction,” Physica D, vol. 199, no. 3-4, pp. 369–386, 2004.
[8]
P. V. Danckwerts, “The definition and measurement of some characteristics of mixtures,” Applied Scientific Research, Section A, vol. 3, no. 4, pp. 279–296, 1952.
[9]
P. V. Danckwerts, “The effect of incomplete mixing on homogeneous reactions,” Chemical Engineering Science, vol. 8, no. 1-2, pp. 93–102, 1958.
[10]
O. Levenspiel, Chemical Reaction Engineering, Wiley, New York, NY, USA, 2nd edition, 1972.
[11]
S. Bhattacharya, Performance improvement of stirred tank reactors with surface feed [Ph.D. thesis], University of Alberta, Edmonton, Canada, 2005.
[12]
J. Baldyga and R. Pohorecki, “Turbulent micromixing in chemical reactors—a review,” The Chemical Engineering Journal and The Biochemical Engineering Journal, vol. 58, no. 2, pp. 183–195, 1995.
[13]
J. Villermaux and L. Falk, “A generalized mixing model for initial contacting of reactive fluids,” Chemical Engineering Science, vol. 49, no. 24, pp. 5127–5140, 1994.
[14]
R. O. Fox, “On the relationship between Lagrangian micromixing models and computational fluid dynamics,” Chemical Engineering and Processing, vol. 37, no. 6, pp. 521–535, 1998.
[15]
R. O. Fox, Computational Models for Turbulent Reacting Flows, Cambridge University Press, Cambridge, UK, 2003.
[16]
F. J. Muzzio and M. Liu, “Chemical reactions in chaotic flows,” Chemical Engineering Journal and the Biochemical Engineering Journal, vol. 64, no. 1, pp. 117–127, 1996.
[17]
M. J. Clifford, “A Gaussian model for reaction and diffusion in a lamellar structure,” Chemical Engineering Science, vol. 54, no. 3, pp. 303–310, 1999.
[18]
M. J. Clifford and S. M. Cox, “A simple model for a two-stage chemical reaction with diffusion,” IMA Journal of Applied Mathematics, vol. 63, no. 3, pp. 307–318, 1999.
[19]
M. J. Clifford, S. M. Cox, and E. P. L. Roberts, “Lamellar modelling of reaction, diffusion and mixing in a two-dimensional flow,” Chemical Engineering Journal, vol. 71, no. 1, pp. 49–56, 1998.
[20]
M. J. Clifford, S. M. Cox, and E. P. L. Roberts, “Reaction and diffusion in a lamellar structure: the effect of the lamellar arrangement upon yield,” Physica A, vol. 262, no. 3-4, pp. 294–306, 1999.
[21]
M. J. Clifford, S. M. Cox, and E. P. L. Roberts, “The influence of a lamellar structure upon the yield of a chemical reaction,” Chemical Engineering Research and Design, vol. 78, no. 3, pp. 371–377, 2000.
[22]
I. Hecht and H. Taitelbaum, “Perturbation analysis for competing reactions with initially separated components,” Physical Review E, vol. 74, no. 1, Article ID 012101, 2006.
[23]
M. Sinder, “Theory for competing reactions with initially separated components,” Physical Review E, vol. 65, no. 3, Article ID 037104, pp. 037104/1–037104/4, 2002.
[24]
M. Sinder, J. Pelleg, V. Sokolovsky, and V. Meerovich, “Competing reactions with initially separated components in the asymptotic time region,” Physical Review E, vol. 68, no. 2, Article ID 022101, 4 pages, 2003.
[25]
H. Taitelbaum, B. Vilensky, A. Lin, A. Yen, Y. E. L. Koo, and R. Kopelman, “Competing reactions with initially separated components,” Physical Review Letters, vol. 77, no. 8, pp. 1640–1643, 1996.
[26]
S. Cornell and M. Droz, “Exotic reaction fronts in the steady state,” Physica D, vol. 103, no. 1–4, pp. 348–356, 1997.
[27]
S. M. Cox and M. D. Finn, “Behavior of the reaction front between initially segregated species in a two-stage reaction,” Physical Review E, vol. 63, no. 5 I, pp. 511021–511027, 2001.
[28]
H. S. Fogler, Elements of Chemical Reaction Engineering, Prentice Hall, Upper Saddle River, NJ, USA, 3rd edition, 1999.
[29]
S. I. A. Shah, L. W. Kostiuk, and S. M. Kresta, “The effects of mixing, reaction rates and stoichiometry on yield for mixing sensitive reactions, Part II: design protocols,” International Journal of Chemical Engineering. In press.