全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Atg14: A Key Player in Orchestrating Autophagy

DOI: 10.1155/2011/713435

Full-Text   Cite this paper   Add to My Lib

Abstract:

Phosphorylation of phosphatidylinositol (PtdIns) by a PtdIns 3-kinase is an essential process in autophagy. Atg14, a specific subunit of one of the PtdIns 3-kinase complexes, targets the complex to the probable site of autophagosome formation, thereby, sorting the complex to function specifically in autophagy. The N-terminal half of Atg14, containing coiled-coil domains, is required to form the PtdIns 3-kinase complex and target it to the proper site. The C-terminal half of yeast Atg14 is suggested to be involved in the formation of a normal-sized autophagosome. The C-terminal half of mammalian Atg14 contains the Barkor/Atg14(L) autophagosome-targeting sequence (BATS) domain that preferentially binds to the highly curved membranes containing PtdIns(3)P and is proposed to target the PtdIns 3-kinase complex efficiently to the isolation membrane. Thus, the N- and C-terminal halves of Atg14 are likely to have an essential core function and a regulatory role, respectively. 1. PtdIns 3-Kinase in Autophagy Eukaryotic cells can enclose their own cytoplasmic components in a double-membrane structure, the autophagosome, and deliver it to a lytic compartment, the vacuole/lysosome, where the contents are then degraded. This conserved system is involved not only in the recycling of proteins under starvation conditions but also in the clearance of organelles and aberrant aggregate-prone proteins, digestion of invading pathogens, and so on [1–4]. Genes involved in autophagy were first identified by yeast genetic screenings [5–7]. At present, more than 30 autophagy-related (ATG) genes have been identified in yeast, and of them at least 18 genes are essential for autophagosome formation, a crucial process in autophagy. Most of these 18 genes are conserved in mammals, suggesting that the mechanism of autophagosome formation is basically conserved from yeast to mammals. The 18 Atg proteins can be divided into five groups according to their functions [8, 9]. One group consists of subunits of a class III phosphatidylinositol (PtdIns) 3-kinase complex (hereafter, PtdIns 3-kinase indicates the class III PtdIns 3-kinase). Atg14 and Vps30/Atg6 are two such proteins and are included in this group together with Vps34 and Vps15, catalytic and regulatory subunits, respectively, (the functions of Vps34 and Vps15 in the vacuolar protein sorting pathway have been studied in detail, and; thus, they are not designated as Atg proteins although they are essential for autophagy). Atg14 is a key subunit in determining the function of the PtdIns 3-kinase complex and is the focus of this

References

[1]  T. Hara, K. Nakamura, M. Matsui et al., “Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice,” Nature, vol. 441, no. 7095, pp. 885–889, 2006.
[2]  M. Komatsu, S. Waguri, T. Chiba et al., “Loss of autophagy in the central nervous system causes neurodegeneration in mice,” Nature, vol. 441, no. 7095, pp. 880–884, 2006.
[3]  I. Nakagawa, A. Amano, N. Mizushima et al., “Autophagy defends cells against invading group A Streptococcus,” Science, vol. 306, no. 5698, pp. 1037–1040, 2004.
[4]  N. Mizushima, B. Levine, A. M. Cuervo, and D. J. Klionsky, “Autophagy fights disease through cellular self-digestion,” Nature, vol. 451, no. 7182, pp. 1069–1075, 2008.
[5]  M. Tsukada and Y. Ohsumi, “Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae,” FEBS Letters, vol. 333, no. 1-2, pp. 169–174, 1993.
[6]  M. Thumm, R. Egner, B. Koch, et al., “Isolation of autophagocytosis mutants of Saccharomyces cerevisiae,” FEBS Letters, vol. 349, no. 2, pp. 275–280, 1994.
[7]  D. J. Klionsky, J. M. Cregg, W. A. Dunn Jr. et al., “A unified nomenclature for yeast autophagy-related genes,” Developmental Cell, vol. 5, no. 4, pp. 539–545, 2003.
[8]  H. Nakatogawa, K. Suzuki, Y. Kamada, and Y. Ohsumi, “Dynamics and diversity in autophagy mechanisms: lessons from yeast,” Nature Reviews Molecular Cell Biology, vol. 10, no. 7, pp. 458–467, 2009.
[9]  Z. Yang and D. J. Klionsky, “An overview of the molecular mechanism of autophagy,” Current Topics in Microbiology and Immunology, vol. 335, no. 1, pp. 1–32, 2009.
[10]  P. V. Schu, K. Takegawa, M. J. Fry, J. H. Stack, M. D. Waterfield, and S. D. Emr, “Phosphatidylinositol 3-kinase encoded by yeast VPS34 gene essential for protein sorting,” Science, vol. 260, no. 5104, pp. 88–91, 1993.
[11]  J. S. Robinson, D. J. Klionsky, L. M. Banta, and S. D. Emr, “Protein sorting in Saccharomyces cerevisiae: isolation of mutants defective in the delivery and processing of multiple vacuolar hydrolases,” Molecular and Cellular Biology, vol. 8, no. 11, pp. 4936–4948, 1988.
[12]  A. Kihara, T. Noda, N. Ishihara, and Y. Ohsumi, “Two distinct Vps34 phosphatidylinositol 3-kinase complexes function in autophagy and carboxypeptidase y sorting in Saccharomyces cerevisiae,” Journal of Cell Biology, vol. 152, no. 3, pp. 519–530, 2001.
[13]  K. Obara, T. Noda, K. Niimi, and Y. Ohsumi, “Transport of phosphatidylinositol 3-phosphate into the vacuole via autophagic membranes in Saccharomyces cerevisiae,” Genes to Cells, vol. 13, no. 6, pp. 537–547, 2008.
[14]  K. Obara, T. Sekito, K. Niimi, and Y. Ohsumi, “The Atg18-Atg2 complex is recruited to autophagic membranes via phosphatidylinositol 3-phosphate and exerts an essential function,” Journal of Biological Chemistry, vol. 283, no. 35, pp. 23972–23980, 2008.
[15]  U. Nair, Y. Cao, Z. Xie, and D. J. Klionsky, “Roles of the lipid-binding motifs of Atg18 and Atg21 in the cytoplasm to vacuole targeting pathway and autophagy,” Journal of Biological Chemistry, vol. 285, no. 15, pp. 11476–11488, 2010.
[16]  A. Simonsen and S. A. Tooze, “Coordination of membrane events during autophagy by multiple class III PI3-kinase complexes,” Journal of Cell Biology, vol. 186, no. 6, pp. 773–782, 2009.
[17]  K. Obara and Y. Ohsumi, “PtdIns 3-kinase orchestrates autophagosome formation in yeast,” Journal of Lipids, vol. 2011, Article ID 498768, 9 pages, 2011.
[18]  E. Itakura, C. Kishi, K. Inoue, and N. Mizushima, “Beclin 1 forms two distinct phosphatidylinositol 3-kinase complexes with mammalian Atg14 and UVRAG,” Molecular Biology of the Cell, vol. 19, no. 12, pp. 5360–5372, 2008.
[19]  Q. Sun, W. Fan, K. Chen, X. Ding, S. Chen, and Q. Zhong, “Identification of Barkor as a mammalian autophagy-specific factor for Beclin 1 and class III phosphatidylinositol 3-kinase,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 49, pp. 19211–19216, 2008.
[20]  K. Matsunaga, T. Saitoh, K. Tabata et al., “Two Beclin 1-binding proteins, Atg14L and Rubicon, reciprocally regulate autophagy at different stages,” Nature Cell Biology, vol. 11, no. 4, pp. 385–396, 2009.
[21]  Y. Zhong, Q. J. Wang, X. Li et al., “Distinct regulation of autophagic activity by Atg14L and Rubicon associated with Beclin 1-phosphatidylinositol-3-kinase complex,” Nature Cell Biology, vol. 11, no. 4, pp. 468–476, 2009.
[22]  A. Petiot, E. Ogier-Denis, E. F. C. Blommaart, A. J. Meijer, and P. Codogno, “Distinct classes of phosphatidylinositol -kinases are involved in signaling pathways that control macro-autophagy in HT-29 cells,” Journal of Biological Chemistry, vol. 275, no. 2, pp. 992–998, 2000.
[23]  W. J. Brown, D. B. DeWald, S. D. Emr, H. Plutner, and W. E. Balch, “Role for phosphatidylinositol 3-kinase in the sorting and transport of newly synthesized lysosomal enzymes in mammalian cells,” Journal of Cell Biology, vol. 130, no. 4, pp. 781–796, 1995.
[24]  H. W. Davidson, “Wortmannin causes mistargeting of procathepsin D. evidence for the involvement of a phosphatidylinositol 3-kinase in vesicular transport to lysosomes,” Journal of Cell Biology, vol. 130, no. 4, pp. 797–805, 1995.
[25]  M. Baba, K. Takeshige, N. Baba, and Y. Ohsumi, “Ultrastructural analysis of the autophagic process in yeast: detection of autophagosomes and their characterization,” Journal of Cell Biology, vol. 124, no. 6, pp. 903–913, 1994.
[26]  K. Obara and Y. Ohsumi, “Dynamics and function of PtdIns(3)P in autophagy,” Autophagy, vol. 4, no. 7, pp. 952–954, 2008.
[27]  J. H. Stack, D. B. DeWald, K. Takegawa, and S. D. Emr, “Vesicle-mediated protein transport: regulatory interactions between the Vps15 protein kinase and the Vps34 PtdIns 3-kinase essential for protein sorting to the vacuole in yeast,” Journal of Cell Biology, vol. 129, no. 2, pp. 321–334, 1995.
[28]  P. K. Herman, J. H. Stack, and S. D. Emr, “A genetic and structural analysis of the yeast Vps15 protein kinase: evidence for a direct role of Vps15p in vacuolar protein delivery,” EMBO Journal, vol. 10, no. 13, pp. 4049–4060, 1991.
[29]  B. Levine, S. Sinha, and G. Kroemer, “Bcl-2 family members: dual regulators of apoptosis and autophagy,” Autophagy, vol. 4, no. 5, pp. 600–606, 2008.
[30]  G. M. Fimia, A. Stoykova, A. Romagnoli et al., “Ambra1 regulates autophagy and development of the nervous system,” Nature, vol. 447, no. 7148, pp. 1121–1125, 2007.
[31]  S. Kametaka, T. Okano, M. Ohsumi, and Y. Ohsumi, “Apg14p and Apg6/Vps30p form a protein complex essential for autophagy in the yeast, Saccharomyces cerevisiae,” Journal of Biological Chemistry, vol. 273, no. 35, pp. 22284–22291, 1998.
[32]  K. Obara, T. Sekito, and Y. Ohsumi, “Assortment of phosphatidylinositol 3-kinase complexes—Atg14p directs association of complex I to the pre-autophagosomal structure in Saccharomyces cerevisiae,” Molecular Biology of the Cell, vol. 17, no. 4, pp. 1527–1539, 2006.
[33]  K. Suzuki, T. Kirisako, Y. Kamada, N. Mizushima, T. Noda, and Y. Ohsumi, “The pre-autophagosomal structure organized by concerted functions of APG genes is essential for autophagosome formation,” EMBO Journal, vol. 20, no. 21, pp. 5971–5981, 2001.
[34]  Q. Sun, W. Westphal, K. N. Wong, I. Tan, and Q. Zhong, “Rubicon controls endosome maturation as a Rab7 effector,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 45, pp. 19338–19343, 2010.
[35]  E. Itakura and N. Mizushima, “Characterization of autophagosome formation site by a hierarchical analysis of mammalian Atg proteins,” Autophagy, vol. 6, no. 6, pp. 764–776, 2010.
[36]  K. Matsunaga, E. Morita, T. Saitoh et al., “Autophagy requires endoplasmic reticulum targeting of the PI3-kinase complex via Atg14L,” Journal of Cell Biology, vol. 190, no. 4, pp. 511–521, 2010.
[37]  E. L. Axe, S. A. Walker, M. Manifava et al., “Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum,” Journal of Cell Biology, vol. 182, no. 4, pp. 685–701, 2008.
[38]  M. Hayashi-Nishino, N. Fujita, T. Noda, A. Yamaguchi, T. Yoshimori, and A. Yamamoto, “A subdomain of the endoplasmic reticulum forms a cradle for autophagosome formation,” Nature Cell Biology, vol. 11, no. 12, pp. 1433–1437, 2009.
[39]  P. Yl?-Anttila, H. Vihinen, E. Jokitalo, and E. L. Eskelinen, “3D tomography reveals connections between the phagophore and endoplasmic reticulum,” Autophagy, vol. 5, no. 8, pp. 1180–1185, 2009.
[40]  W. Fan, A. Nassiri, and Q. Zhong, “Autophagosome targeting and membrane curvature sensing by Barkor/Atg14(L),” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 19, pp. 7769–7774, 2011.
[41]  K. Suzuki, Y. Kubota, T. Sekito, and Y. Ohsumi, “Hierarchy of Atg proteins in pre-autophagosomal structure organization,” Genes to Cells, vol. 12, no. 2, pp. 209–218, 2007.
[42]  H. Nakatogawa, Y. Ichimura, and Y. Ohsumi, “Atg8, a ubiquitin-like protein required for autophagosome formation, mediates membrane tethering and hemifusion,” Cell, vol. 130, no. 1, pp. 165–178, 2007.
[43]  H. Abeliovich, W. A. Dunn Jr., J. Kim, and D. J. Klionsky, “Dissection of autophagosome biogenesis into distinct nucleation and expansion steps,” Journal of Cell Biology, vol. 151, no. 5, pp. 1025–1034, 2000.
[44]  Z. Xie, U. Nair, and D. J. Klionsky, “Atg8 controls phagophore expansion during autophagosome formation,” Molecular Biology of the Cell, vol. 19, no. 8, pp. 3290–3298, 2008.
[45]  I. Vergne, E. Roberts, R. A. Elmaoued et al., “Control of autophagy initiation by phosphoinositide 3-phosphatase jumpy,” EMBO Journal, vol. 28, no. 15, pp. 2244–2258, 2009.
[46]  N. Taguchi-Atarashi, M. Hamasaki, K. Matsunaga et al., “Modulation of local Ptdins3P levels by the PI phosphatase MTMR3 regulates constitutive autophagy,” Traffic, vol. 11, no. 4, pp. 468–478, 2010.
[47]  Y. Kabeya, N. N. Noda, Y. Fujioka, K. Suzuki, F. Inagaki, and Y. Ohsumi, “Characterization of the Atg17-Atg29-Atg31 complex specifically required for starvation-induced autophagy in Saccharomyces cerevisiae,” Biochemical and Biophysical Research Communications, vol. 389, no. 4, pp. 612–615, 2009.
[48]  T. Hara, A. Takamura, C. Kishi et al., “FIP200, a ULK-interacting protein, is required for autophagosome formation in mammalian cells,” Journal of Cell Biology, vol. 181, no. 3, pp. 497–510, 2008.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133