全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2016 

基于自校正Kalman滤波的液膜密封端面摩擦状态监测技术

DOI: 10.3969/j.issn.0254-0150.2016.04.022

Keywords: 声发射 液膜密封 ARMA模型 自校正Kalman滤波 RBF神经网络

Full-Text   Cite this paper   Add to My Lib

Abstract:

声发射技术是液膜密封端面摩擦状态的有效检测方法,但是受工业背景噪声的影响,难以分离出声发射信号中所需信息。针对此问题,采用基于ARMA模型的自校正Kalman滤波技术处理声发射信号。该滤波器能在系统模型参数和噪声特性未知的情况下,收敛于稳态最优卡尔曼滤波器,因此滤波后的声发射信号的所需特征信号更突出,有利于液膜密封端面摩擦状态的检测。建立RBF神经网络,以时域、频域和时频域特征值作为输入进行网络训练,实现密封端面摩擦状态模式识别。实验结果证明,该监测方法能实时有效地识别端面摩擦状态,识别结果与电涡流直接测量得到的结果一致

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133