This paper summarizes some applications of ultrasonic vibrations regarding heat transfer enhancement techniques. Research literature is reviewed, with special attention to examples for which ultrasonic technology was used alongside a conventional heat transfer process in order to enhance it. In several industrial applications, the use of ultrasound is often a way to increase productivity in the process itself, but also to take advantage of various subsequent phenomena. The relevant example brought forward here concerns heat exchangers, where it was found that ultrasound not only increases heat transfer rates, but might also be a solution to fouling reduction. 1. Introduction In engineering applications, ultrasound is helpfully used to improve systems efficiencies. Intensifying chemical reactions, drying, welding, and cleaning are among the various possible applications of ultrasonic waves [1]. An analogous observation can be made for heat transfer processes, which are omnipresent in the industry: cooling applications, heat exchangers, temperature control, and so forth. It is somewhat logical and natural to wonder what could be the influence of ultrasound upon heat transfer systems. Strangely, it has not been a research topic deeply investigated until recently. It appears that researches undertaken in the past concerned basic systems, usually with a single fluid, such as heating rods or walls in a volume of water subjected to ultrasonic vibrations. The tendency goes toward systems getting more complicated (e.g., cooling of tiny components, vibrating structures for heat exchangers) and models becoming more accurate with powerful numerical simulations for example. The objectives of this paper are to provide scientific and historical backgrounds to the future studies concerning heat transfer enhancement by ultrasonic vibrations and to bring forward the evolution of this domain with several examples of applications. The first part describes an overview of ultrasound, induced phenomena, and how they positively influence heat transfer processes. Then, examples drawn from various fields of interest are analysed (thermal engineering, food industry, experimental and numerical simulations). Emphasis is made on the best improvements and results obtained. Finally, recent adaptation of ultrasonic technologies to heat exchanger devices is discussed thoroughly, with examples drawn from new patents and current laboratory work. 2. Generalities about Ultrasound 2.1. Standard Classification by Power, Frequency, and Use Acoustic waves of which frequencies are higher than
References
[1]
T. J. Mason and J. P. Lorimer, Sonochemistry: Theory, Applications and Uses of Ultrasound in Chemistry, Ellis Horwood, Chichester, UK, 1988.
[2]
J. D. N. Cheeke, Fundamentals and Applications of Ultrasonic Waves, CRC Press, New York, NY, USA, 2002.
[3]
H. Li, Y. Li, and Z. Li, “The heating phenomenon produced by an ultrasonic fountain,” Ultrasonics Sonochemistry, vol. 4, no. 2, pp. 217–218, 1997.
[4]
J. L. Laborde, A. Hita, J. P. Caltagirone, and A. Gerard, “Fluid dynamics phenomena induced by power ultrasounds,” Ultrasonics, vol. 38, no. 1, pp. 297–300, 2000.
[5]
S. J. Lighthill, “Acoustic streaming,” Journal of Sound and Vibration, vol. 61, no. 3, pp. 391–418, 1978.
[6]
N. Riley, “Acoustic streaming,” Theoretical and Computational Fluid Dynamics, vol. 10, no. 1–4, pp. 349–356, 1998.
[7]
R. M. Fand and J. Kave, “Acoustic streaming near a heated cylinder,” Journal of the Acoustical Society of America, vol. 32, pp. 579–584, 1960.
[8]
S. Hyun, D. R. Lee, and B. G. Loh, “Investigation of convective heat transfer augmentation using acoustic streaming generated by ultrasonic vibrations,” International Journal of Heat and Mass Transfer, vol. 48, no. 3-4, pp. 703–718, 2005.
[9]
B. G. Loh, S. Hyun, P. I. Ro, and C. Kleinstreuer, “Acoustic streaming induced by ultrasonic flexural vibrations and associated enhancement of convective heat transfer,” Journal of the Acoustical Society of America, vol. 111, no. 2, pp. 875–883, 2002.
[10]
Y. K. Oh, S. H. Park, and Y. I. Cho, “A study of the effect of ultrasonic vibrations on phase-change heat transfer,” International Journal of Heat and Mass Transfer, vol. 45, no. 23, pp. 4631–4641, 2002.
[11]
M. Nakagawa, “Analyses of acoustic streaming generated by four ultrasonic vibrators in a vessel,” Japanese Journal of Applied Physics, vol. 43, no. 5, pp. 2847–2851, 2004.
[12]
P. Vainshtein, M. Fichman, and C. Gutfinger, “Acoustic enhancement of heat transfer between two parallel plates,” International Journal of Heat and Mass Transfer, vol. 38, no. 10, pp. 1893–1899, 1995.
[13]
Y. Lin and B. Farouk, “Heat transfer in a rectangular chamber with differentially heated horizontal walls: effects of a vibrating sidewall,” International Journal of Heat and Mass Transfer, vol. 51, no. 11-12, pp. 3179–3189, 2008.
[14]
Q. Wan and A. V. Kuznetsov, “Streaming in a channel bounded by an ultrasonically oscillating beam and its cooling efficiency,” Numerical Heat Transfer A, vol. 45, no. 1, pp. 21–47, 2004.
[15]
S. Nomura and M. Nakagawa, “Ultrasonic enhancement of heat transfer on narrow surface,” Heat Transfer, vol. 22, no. 6, pp. 546–558, 1993.
[16]
S. Nomura, A. Yamamoto, and K. Murakami, “Ultrasonic heat transfer enhancement using a horn-type transducer,” Japanese Journal of Applied Physics, vol. 41, no. 5, pp. 3217–3222, 2002.
[17]
R. E. Apfel, “Acoustic cavitation inception,” Ultrasonics, vol. 22, no. 4, pp. 167–173, 1984.
[18]
E. A. Neppiras, “Acoustic cavitation series: part one. Acoustic cavitation: an introduction,” Ultrasonics, vol. 22, no. 1, pp. 25–28, 1984.
[19]
S. Nomura, K. Murakami, and Y. Sasaki, “Streaming induced by ultrasonic vibration in a water vessel,” Japanese Journal of Applied Physics, vol. 39, no. 6, pp. 3636–3640, 2000.
[20]
S. W. Wong and W. Y. Chon, “Effects of ultrasonic vibrations on heat transfer to liquids by natural convection and by boiling,” AIChE Journal, vol. 15, no. 2, pp. 281–288, 1969.
[21]
B. Schneider, A. Ko?ar, C. J. Kuo et al., “Cavitation enhanced heat transfer in microchannels,” Journal of Heat Transfer, vol. 128, no. 12, pp. 1293–1301, 2006.
[22]
E. Herbert, Cavitation acoustique dans l'eau pure, Ph.D. thesis, école normale supérieure, Département de physique, 2006.
[23]
E. A. Neppiras, “Acoustic cavitation,” Physics Reports, vol. 61, no. 3, pp. 159–251, 1980.
[24]
E. A. Neppiras, “Acoustic cavitation thresholds and cyclic processes,” Ultrasonics, vol. 18, no. 5, pp. 201–209, 1980.
[25]
E. Webster, “Cavitation,” Ultrasonics, vol. 1, no. 1, pp. 39–48, 1963.
[26]
S. Nomura, K. Murakami, and M. Kawada, “Effects of turbulence by ultrasonic vibration on fluid flow in a rectangular channel,” Japanese Journal of Applied Physics, vol. 41, no. 11, pp. 6601–6605, 2002.
[27]
H. V. Fairbanks, “Influence of ultrasound upon heat transfer systems,” in Proceedings of the Ultrasonics Symposium, pp. 384–387, 1979.
[28]
B. Li and D. W. Sun, “Effect of power ultrasound on freezing rate during immersion freezing of potatoes,” Journal of Food Engineering, vol. 55, no. 3, pp. 277–282, 2002.
[29]
L. Zheng and D. W. Sun, “Innovative applications of power ultrasound during food freezing processes—a review,” Trends in Food Science and Technology, vol. 17, no. 1, pp. 16–23, 2006.
[30]
T. J. Mason, L. Paniwnyk, and J. P. Lorimer, “The uses of ultrasound in food technology,” Ultrasonics Sonochemistry, vol. 3, no. 3, pp. S253–S260, 1996.
[31]
T. Inada, X. Zhang, A. Yabe, and Y. Kozawa, “Active control of phase change from supercooled water to ice by ultrasonic vibration 1. Control of freezing temperature,” International Journal of Heat and Mass Transfer, vol. 44, no. 23, pp. 4523–4531, 2001.
[32]
X. Zhang, T. Inada, A. Yabe, S. Lu, and Y. Kozawa, “Active control of phase change from supercooled water to ice by ultrasonic vibration 2. Generation of ice slurries and effect of bubble nuclei,” International Journal of Heat and Mass Transfer, vol. 44, no. 23, pp. 4533–4539, 2001.
[33]
H. Y. Kim, Y. G. Kim, and B. H. Kang, “Enhancement of natural convection and pool boiling heat transfer via ultrasonic vibration,” International Journal of Heat and Mass Transfer, vol. 47, no. 12-13, pp. 2831–2840, 2004.
[34]
D. W. Zhou, D. Y. Liu, X. G. Hu, and C. F. Ma, “Effect of acoustic cavitation on boiling heat transfer,” Experimental Thermal and Fluid Science, vol. 26, no. 8, pp. 931–938, 2002.
[35]
D. Zhou and D. Liu, “Boiling heat transfer in an acoustic cavitation field,” Chinese Journal of Chemical Engineering, vol. 10, no. 5, pp. 625–629, 2002.
[36]
S. Heffington and A. Glezer, “Enhanced boiling heat transfer by submerged ultrasonic vibrations,” in Proceedings of the Therminic 2004, Sophia Antipolis, France, October 2004.
[37]
A. Serizawa, M. Mukai, N. Aoki, et al., “Effect of ultrasonic emission on boiling and non-boiling heat transfer in natural and forced circulation systems,” in Proceedings of the X International Heat Transfer Conference, vol. 6, pp. 97–102, Brighton, UK, 1994.
[38]
A. Nakayama and M. Kano, “Enhancement of saturated nucleate pool boiling heat transfer by ultrasonic vibrations,” Heat Transfer, vol. 20, no. 5, pp. 407–417, 1991.
[39]
Y. Iida, K. Tsutsui, R. Ishii, and Y. Yamada, “Natural-convection heat transfer in a field of ultrasonic waves and sound pressure,” Journal of Chemical Engineering of Japan, vol. 24, no. 6, pp. 794–796, 1991.
[40]
T. Hoshino, H. Yukawa, and H. Saito, “Effect of ultrasonic vibrations on free convective heat transfer from heated wire to water,” Heat Transfer, vol. 5, no. 1, pp. 37–49, 1976.
[41]
T. Hoshino and H. Yukawa, “Physical mechanism of heat transfer from heated and cooled cylinder to water in ultrasonic standing wave field,” Journal of Chemical Engineering of Japan, vol. 12, no. 5, pp. 347–352, 1979.
[42]
H. Yamashiro, H. Takamatsu, and H. Honda, “Effect of ultrasonic vibration on transient boiling heat transfer during rapid quenching of a thin wire in water,” Journal of Heat Transfer, vol. 120, no. 1, pp. 282–286, 1998.
[43]
H. Yamashiro, H. Takamatsu, and H. Honda, “Enhancement of cooling rate during rapid quenching of a thin wire by ultrasonic vibration,” Heat Transfer, vol. 27, no. 1, pp. 16–30, 1998.
[44]
J. H. Jeong and Y. C. Kwon, “Effects of ultrasonic vibration on subcooled pool boiling critical heat flux,” Heat and Mass Transfer, vol. 42, no. 12, pp. 1155–1161, 2006.
[45]
F. Baffigi and C. Bartoli, “Heat transfer enhancement from a circular cylinder to distilled water by ultrasonic waves in subcooled boiling conditions,” in Proceedings of the ITP2009 Interdisciplinary Transport Phenomena VI: Fluid, Thermal, Biological, Materials and Space Sciences, Volterra, Italy, October 2009.
[46]
Y. C. Kwon, J. T. Kwon, J. H. Jeong, and S. H. Lee, “Experimental study on CHF enhancement in pool boiling using ultrasonic field,” Journal of Industrial and Engineering Chemistry, vol. 11, no. 5, pp. 631–637, 2005.
[47]
K. A. Park and A. E. Bergles, “Ultrasonic enhancement of saturated and subcooled pool boiling,” International Journal of Heat and Mass Transfer, vol. 31, no. 3, pp. 664–667, 1988.
[48]
Z. W. Douglas, M. K. Smith, and A. Glezer, “Acoustically enhanced boiling heat transfer,” in Proceedings of the Therminic 2007, Budapest, Hungary, September 2007.
[49]
D. H. Kim, Y. H. Lee, and S. H. Chang, “Effects of mechanical vibration on critical heat flux in vertical annulus tube,” Nuclear Engineering and Design, vol. 237, no. 9, pp. 982–987, 2007.
[50]
A. E. Bergles and P. H. Newell, “The influence of ultrasonic vibrations on heat transfer to water flowing in annuli,” International Journal of Heat and Mass Transfer, vol. 8, no. 10, pp. 1273–1280, 1965.
[51]
S. Bonekamp and K. Bier, “Influence of ultrasound on pool boiling heat transfer to mixtures of the refrigerants R23 and R134A,” International Journal of Refrigeration, vol. 20, no. 8, pp. 606–615, 1997.
[52]
H. J. Kim and J. H. Jeong, “Numerical analysis of experimental observations for heat transfer augmentation by ultrasonic vibration,” Heat Transfer Engineering, vol. 27, no. 2, pp. 14–22, 2006.
[53]
D. W. Zhou, “Heat transfer enhancement of copper nanofluid with acoustic cavitation,” International Journal of Heat and Mass Transfer, vol. 47, no. 14–16, pp. 3109–3117, 2004.
[54]
D. W. Zhou and D. Y. Liu, “Heat transfer characteristics of nanofluids in an acoustic cavitation field,” Heat Transfer Engineering, vol. 25, no. 6, pp. 54–61, 2004.
[55]
J. A. Gallego-Juárez, G. Rodriguez-Corral, J. C. Galvez-Moraleda, and T. S. Yang, “A new high-intensity ultrasonic technology for food dehydration,” Drying Technology, vol. 17, no. 3, pp. 597–608, 1999.
[56]
J. V. García-Pérez, J. A. Cárcel, E. Riera, and A. Mulet, “Influence of the applied acoustic energy on the drying of carrots and lemon peel,” Drying Technology, vol. 27, no. 2, pp. 281–287, 2009.
[57]
J. V. García-Pérez, J. A. Cárcel, J. Benedito, and A. Mulet, “Power ultrasound mass transfer enhancement on food drying,” Food and Bioproducts Processing, vol. 85, no. 3, pp. 247–254, 2007.
[58]
J. A. Cárcel, J. V. García-Pérez, E. Riera, and A. Mulet, “Influence of high-intensity ultrasound on drying kinetics of persimmon,” Drying Technology, vol. 25, no. 1, pp. 185–193, 2007.
[59]
S. de la Fuente-Blanco, E. R. F. de Sarabia, V. M. Acosta-Aparicio, A. Blanco-Blanco, and J. A. Gallego-Juárez, “Food drying process by power ultrasound,” Ultrasonics, vol. 44, pp. e523–e527, 2006.
[60]
S. K. Sastry, G. Q. Shen, and J. L. Blaisdell, “Effect of ultrasonic vibration on fluid-to-particle convective heat transfer coefficients,” Journal of Food Science, vol. 54, pp. 229–230, 1989.
[61]
V. Uhlenwinkel, R. Meng, and K. Bauckhage, “Investigation of heat transfer from circular cylinders in high power 10?kHz and 20?kHz acoustic resonant fields,” International Journal of Thermal Sciences, vol. 39, no. 8, pp. 771–779, 2000.
[62]
M. B. Larson, A study of the effects of ultrasonic vibrations on convective heat transfer in liquids, Ph.D. dissertation, Stanford University, Stanford, Calif, USA, 1961, Mic 61-1235.
[63]
A. E. Bergles, “Survey and evaluation of techniques to augment convective heat and mass transfer,” Progress in Heat and Mass Transfer, vol. 1, pp. 331–424, 1969.
[64]
S. Komarov and M. Hirasawa, “Enhancement of gas phase heat transfer by acoustic field application,” Ultrasonics, vol. 41, no. 4, pp. 289–293, 2003.
[65]
H. Yukawa, T. Hoshino, and H. Saito, “Effect of ultrasonic vibration on free convective heat transfer from an inclined plate in water,” Heat Transfer, vol. 5, no. 4, pp. 1–16, 1976.
[66]
S. Nomura, K. Murakami, Y. Aoyama, and J. Ochi, “Effects of changes in frequency of ultrasonic vibrations on heat transfer,” Heat Transfer, vol. 29, no. 5, pp. 358–372, 2000.
[67]
S. Nomura, M. Nakagawa, S. Mukasa, H. Toyota, K. Murakami, and R. Kobayashi, “Ultrasonic heat transfer enhancement with obstacle in front of heating surface,” Japanese Journal of Applied Physics, vol. 44, no. 6, pp. 4674–4677, 2005.
[68]
H. Engelbrecht and L. Pretorius, “The effect of sound on natural convection from a vertical flat plate,” Journal of Sound and Vibration, vol. 158, no. 2, pp. 213–218, 1992.
[69]
P. D. Richardson, “Local effects of horizontal and vertical sound fields on natural convection from a horizontal cylinder,” Journal of Sound and Vibration, vol. 10, no. 1, pp. 32–41, 1969.
[70]
R. K. Gould, “Heat transfer across a solid-liquid interface in the presence of acoustic streaming,” The Journal of the Acoustical Society of America, vol. 40, no. 1, pp. 219–225, 1966.
[71]
J. Cai, X. Huai, S. Liang, and X. Li, “Augmentation of natural convective heat transfer by acoustic cavitation,” Frontiers of Energy and Power Engineering in China, vol. 4, no. 3, pp. 313–318, 2010.
[72]
S. Y. Lee and Y. D. Choi, “Turbulence enhancement by ultrasonically induced gaseous cavitation in the CO2 saturated water,” KSME International Journal, vol. 16, no. 2, pp. 246–254, 2002.
[73]
S. Nomura, Y. Sasaki, and K. Murakami, “Flow pattern in a channel during application of ultrasonic vibration,” Japanese Journal of Applied Physics, vol. 39, no. 8, pp. 4987–4989, 2000.
[74]
D. Zhou, X. Hu, and D. Liu, “Local convective heat transfer from a horizontal tube in an acoustic cavitation field,” Journal of Thermal Science, vol. 13, no. 4, pp. 338–343, 2004.
[75]
A. V. Markov, Y. S. Astashkin, and I. I. Sulimtsev, “Influence of ultrasound on heat transfer under the conditions of forced flow of a high-temperature melt,” Journal of Engineering Physics and Thermophysics, vol. 48, no. 2, pp. 242–244, 1985.
[76]
D. R. Lee and B. G. Loh, “Smart cooling technology utilizing acoustic streaming,” IEEE Transactions on Components and Packaging Technologies, vol. 30, no. 4, pp. 691–699, 2007.
[77]
F. Lam, S. Avramidis, and G. Lee, “Effect of ultrasonic vibration on convective heat transfer between water and wood cylinders,” Wood and Fiber Science, vol. 24, no. 2, pp. 154–160, 1992.
[78]
W. L. Nyborg, “Acoustic streaming near a Boundary,” Journal of Acoustical Society of America, vol. 4, pp. 329–339, 1958.
[79]
J. Cai, X. Huai, R. Yan, and Y. Cheng, “Numerical simulation on enhancement of natural convection heat transfer by acoustic cavitation in a square enclosure,” Applied Thermal Engineering, vol. 29, no. 10, pp. 1973–1982, 2009.
[80]
Q. Wan and A. V. Kuznetsov, “Numerical study of the efficiency of acoustic streaming for enhancing heat transfer between two parallel beams,” Flow, Turbulence and Combustion, vol. 70, no. 1–4, pp. 89–114, 2003.
[81]
M. K. Aktas, B. Farouk, and Y. Lin, “Heat transfer enhancement by acoustic streaming in an enclosure,” Journal of Heat Transfer, vol. 127, no. 12, pp. 1313–1321, 2005.
[82]
U. Kurbanov and K. Melkumov, “Use of ultrasound for intensification of heat transfer process in heat exchangers,” in Proceedings of the International Congress of Refrigeration, vol. 4, pp. 1–5, Washington, DC, USA, 2003.
[83]
A. Monnot, P. Boldo, N. Gondrexon, and A. Bontemps, “Enhancement of cooling rate by means of high frequency ultrasound,” Heat Transfer Engineering, vol. 28, no. 1, pp. 3–8, 2007.
[84]
Y. Tisseau, P. Boldo, N. Gondrexon, and A. Bontemps, “Conception et étude préliminaire d'un échangeur de chaleur tubes et calandre assisté par ultrasons,” in Proceedings of the 18ème Congrès Fran?ais de Mécanique, Grenoble, France, Ao?t 2007.
[85]
N. Gondrexon, Y. Rousselet, M. Legay, P. Boldo, S. Le Person, and A. Bontemps, “Intensification of heat transfer process: improvement of shell-and-tube heat exchanger performances by means of ultrasound,” Chemical Engineering and Processing, vol. 49, no. 9, pp. 936–942, 2010.
[86]
D. W. Zhou, “A novel concept for boiling heat transfer enhancement,” Journal of Mechanical Engineering, vol. 51, no. 7-8, pp. 366–373, 2005.
[87]
W. Benzinger, U. Schygulla, M. J?ger, and K. Schubert, “Anti-fouling investigations with ultrasound in a microstructured heat exchanger,” in Proceedings of the 6th International Conference on Heat Exchanger Fouling and Cleaning—Challenges and Opportunities, Kloster Irsee, Germany, 2005.
[88]
T. R. Bott, “Biofouling control with ultrasound,” Heat Transfer Engineering, vol. 21, no. 3, pp. 43–49, 2000.
[89]
I. E. C. Mott, D. J. Stickler, W. T. Coakley, and T. R. Bott, “The removal of bacterial biofilm from water-filled tubes using axially propagated ultrasound,” Journal of Applied Microbiology, vol. 84, no. 4, pp. 509–514, 1998.
[90]
T. R. Bott and L. Tianqing, “Ultrasound enhancement of biocide efficiency,” Ultrasonics Sonochemistry, vol. 11, no. 5, pp. 323–326, 2004.
[91]
H. X. Li, X. L. Huai, J. Cai, and S. Q. Liang, “Experimental research on antiscale and scale removal by ultrasonic cavitation,” Journal of Thermal Science, vol. 18, no. 1, pp. 65–73, 2009.
[92]
X. L. Duan, X. Y. Wang, G. Wang, Y. Z. Chen, and X. Q. Qiu, “Experimental study on the influence of ultrasonic vibration on heat transfer and pressure drop in heat exchanger tubes,” Petrochemical Equipment, vol. 33, no. 1, pp. 1–4, 2004.
[93]
Z. Zhenxian, “Ultrasonic highly effective heat exchanger,” CN 201364049 (Y), December 2009.
[94]
Z. Jili and M. Liangdong, “Shell and tube type acoustic cavitation sewerage heat exchanger,” CN 201229131 (Y), April 2009.
[95]
Z. Jili and M. Liangdong, “Immersion type acoustic cavitation sewerage heat exchanger,” CN 201229132 (Y), April 2009.
[96]
K. Tanaka, “Heat exchanger provided with ultrasonic vibration function,” JP 2006349239 (A), December 2006.
[97]
T. Makino, “Heat exchanger,” JP 2007120933 (A), May 2007.
[98]
Y. Ye, L. Shiqing, and C. Jing, “Pipe type heat exchanger with heat exchange shell intensified by ultrasonic wave,” CN 101196380 (A), June 2008.
[99]
H. Dezhong, “Superturbulent heat exchanger cavitated and reinforced by ultrasonic wave and a heat exchange method thereof,” CN 101586924 (A), November 2009.
[100]
H. J. Robionek, “Hot water tank heat exchanger has ultrasound directed at the centre of the heating coil, to swirl the water around it,” DE 102007040031 (A1), February 2009.
[101]
Y. Yingwu, L. Yuanchen, X. Xiangyang, et al., “Apparatus of ultrasound heat exchange,” CN 101091838 (A), December 2007.
[102]
C. Zhenqian, “Air source heat pump ultrasound wave defrosting system,” CN 101144669 (A), March 2008.
[103]
K. Tanaka, “Heat exchanger with vibrator to remove accumulated solids,” US 2009032222 (A1), December 2006.
[104]
M. Nogues, “Process and apparatus to vibrate a continuous metal casting input mold,” FR 8907839 (A), June 1989.