全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Sustainable Algae Biodiesel Production in Cold Climates

DOI: 10.1155/2010/102179

Full-Text   Cite this paper   Add to My Lib

Abstract:

This life cycle assessment aims to determine the most suitable operating conditions for algae biodiesel production in cold climates to minimize energy consumption and environmental impacts. Two hypothetical photobioreactor algae production and biodiesel plants located in Upstate New York (USA) are modeled. The photobioreactor is assumed to be housed within a greenhouse that is located adjacent to a fossil fuel or biomass power plant that can supply waste heat and flue gas containing as a primary source of carbon. Model results show that the biodiesel areal productivity is high (19 to 25?L of BD/m2/yr). The total life cycle energy consumption was between 15 and 23?MJ/L of algae BD and 20?MJ/L of soy BD. Energy consumption and air emissions for algae biodiesel are substantially lower than soy biodiesel when waste heat was utilized. Algae's most substantial contribution is a significant decrease in the petroleum consumed to make the fuel. 1. Introduction In 1998, an amendment to the U.S. Energy Policy Act (EP Act) of 1992 triggered the rapid expansion of the US biodiesel industry. This act required that a fraction of new vehicles purchased by federal and state governments be alternative fuel vehicles. The U.S. Energy Independence and Security Act (EISA) of 2007 further mandated the production of renewable fuels to 36 billion gallons (136 billion liters) per year by 2022, including biodiesel. Crops such as soybeans and canola account for more than three quarters of all biodiesel feedstocks in the U.S. [1]. About 14% of U.S. soybean production and 4% of global soybean production were used by the U.S. biodiesel industry to produce fuel in 2007 [1]. The use of oil crops for fuel has been criticized because the expansion of biodiesel production in the United States and Europe has coincided with a sharp increase in prices for food grains and vegetable oils [2]. The production of biodiesel from feedstocks that do not use arable land can be accomplished either by using biomass that is currently treated as waste or by introducing a new technology that allows for the development of new feedstocks for biodiesel that utilize land that is unsuitable for food production. Microalgae have the potential to displace other feedstocks for biodiesel owing to its high vegetable oil content and biomass production rates [3]. The vegetable oil content of algae can vary with growing conditions and species, but has been known to exceed 70% of the dry weight of algae biomass [4]. Microalgae could have significant social and environmental benefits because they do not compete for

References

[1]  DOE Alternative Fuels and Advanced Vehicles Data Center, Biodiesel Production. October, 2009, http://www.afdc.energy.gov/afdc/fuels/biodiesel_production.html.
[2]  D. Pimentel, S. Williamson, C. E. Alexander, O. Gonzalez-Pagan, C. Kontak, and S. E. Mulkey, “Reducing energy inputs in the US food system,” Human Ecology, vol. 34, no. 4, pp. 459–471, 2008.
[3]  C. U. Ugwu, H. Aoyagi, and H. Uchiyama, “Photobioreactors for mass cultivation of algae,” Bioresource Technology, vol. 99, no. 10, pp. 4021–4028, 2008.
[4]  A. Banerjee, R. Sharma, Y. Chisti, and U. C. Banerjee, “Botryococcus braunii: a renewable source of hydrocarbons and other chemicals,” Critical Reviews in Biotechnology, vol. 22, no. 3, pp. 245–279, 2002.
[5]  Y. Li, M. Horsman, N. Wu, C. Q. Lan, and N. Dubois-Calero, “Biofuels from microalgae,” Biotechnology Progress, vol. 24, no. 4, pp. 815–820, 2008.
[6]  E. Ono and J. L. Cuello, “Feasibility assessment of microalgal carbon dioxide sequestration technology with photobioreactor and solar collector,” Biosystems Engineering, vol. 95, no. 4, pp. 597–606, 2006.
[7]  M. Olaizola, “Commercial development of microalgal biotechnology, from the test tube to the marketplace,” Biomolecular Engineering, vol. 20, no. 4–6, pp. 459–466, 2003.
[8]  A. Richmond, “Microalgal biotechnology at the turn of the millenniumml: a personal view,” Journal of Applied Phycology, vol. 12, no. 3–5, pp. 441–451, 2000.
[9]  S. Hirata, M. Hayashitani, M. Taya, and S. Tone, “Carbon dioxide fixation in batch culture of Chlorella sp. using a photobioreactor with a sunlight-collection device,” Journal of Fermentation and Bioengineering, vol. 81, no. 5, pp. 470–472, 1996.
[10]  J. Sheehan, T. Dunahay, J. Benemannm, and P. Roessler, “A look back at the U.S. Department of Energy's Aquatic Species Program-Biodiesel from Algae,” Tech. Rep. TP-580-24190, NREL, Golden, Colo, USA, 1998, http://www.fuelandfiber.com/Athena/biodiesel_from_algae_es.pdf.
[11]  H. Xu, X. Miao, and Q. Wu, “High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters,” Journal of Biotechnology, vol. 126, no. 4, pp. 499–507, 2006.
[12]  E. Molina, J. Fernandez, F. G. Acién, and Y. Chisti, “Tubular photobioreactor design for algal cultures,” Journal of Biotechnology, vol. 92, no. 2, pp. 113–131, 2001.
[13]  Y. Chisti, “Biodiesel from microalgae,” Biotechnology Advances, vol. 25, no. 3, pp. 294–306, 2007.
[14]  M. Wang, “Overview of GREET model development at Argonne,” in Proceedings of the GREET User Workshop, Center for Transportation Research, Argonne National Laboratory, Sacramento, Calif, USA, March 2008, http://www.transportation.anl.gov/pdfs/TA/468.pdf.
[15]  A. Lavigne and S. E. Powers, “Evaluating fuel ethanol feedstocks from energy policy perspectives: a comparative energy assessment of corn and corn stover,” Energy Policy, vol. 35, no. 11, pp. 5918–5930, 2007.
[16]  J. Hill, S. Polasky, E. Nelson, et al., “Climate change and health costs of air emissions from biofuels and gasoline,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 6, pp. 2077–2082, 2009.
[17]  CARB, “Detailed California-GREET Pathway for Biodiesel (Esterified Soyoil) from Midwest Soybeans, Ver. 2.1,” Tech. Rep., California Air Resources Board Stationary Source Division, 2009, http://www.arb.ca.gov/fuels/lcfs/022709lcfs_biodiesel.pdf.
[18]  J. Sheehan, V. Camobreco, J. Duffield, M. Graboski, and H. Shapouri, “Life cycle inventory of biodiesel and petroleum diesel for use in an urban bus,” Tech. Rep. SR-580-24089, NREL, Golden, Colo, USA, 1998.
[19]  E. Molina Grima, E.-H. Belarbi, F. G. A. Fernandez, A. R. Medina, and Y. Chisti, “Recovery of microalgal biomass and metabolites: process options and economics,” Biotechnology Advances, vol. 20, no. 7-8, pp. 491–515, 2003.
[20]  G. L. Rorrer and R. K. Mullikin, “Modeling and simulation of a tubular recycle photobioreactor for macroalgal cell suspension cultures,” Chemical Engineering Science, vol. 54, no. 15-16, pp. 3153–3162, 1999.
[21]  M. Barbosa, Microalgal photobioreactors: scale up and optimization, Ph.D. Dissertation, van Wageningen University, Wageningen, The Netherlands, 2003.
[22]  E. Molina Grima, F. G. A. Fernandez, F. G. Camacho, and Y. Chisti, “Photobioreactors: light regime, mass transfer, and scaleup,” Journal of Biotechnology, vol. 70, no. 1–3, pp. 231–247, 1999.
[23]  F. G. A. Fernandez, F. G. Camacho, J. A. S. Perez, J. M. F. Sevilla, and E. M. Grima, “Modeling of biomass productivity in tubular photobioreactors for microalgal cultures: affects of dilution rate, tube diameter, and solar irradiance,” Biotechnology and Bioengineering, vol. 58, no. 6, pp. 605–616, 1998.
[24]  National Renewable Energy Laboratory, “National solar radiation database 1991–2005 update: user's manual,” Tech. Rep. TP-581-41364, NREL, Golden, Colo, USA, 2007.
[25]  L. A. Meireles, A. C. Guedes, C. R. Barbosa, J. L. Azevedo, J. P. Cunha, and F. X. Malcata, “On-line control of light intensity in a microalgal bioreactor using a novel automatic system,” Enzyme and Microbial Technology, vol. 42, no. 7, pp. 554–559, 2008.
[26]  American Council for Energy Efficient Economy. Water Heating, January 2009, http://www.aceee.org/consumerguide/waterheating.htm.
[27]  Noritz America Corporation. US Average Groundwater Temperature, November, 2008, http://www.noritz.com/u/US_ground_temperature%5B1%5D.pdf.
[28]  G. Burgess, J. G. Fernandez-Velasco, and K. Lovegrove, “Materials, geometry, and net energy ratio of tubular photobioreactors for microalgal hydrogen production,” in Proceedings of the World Hydrogen Energy Conference (WHEC '06), vol. 16, Lyon, France, June 2006.
[29]  OSRAM Sylvania Corp, “Photosynthetically Active Radiation Units,” October, 2009, http://openwetware.org/images/e/e8/Conversion_lux.pdf.
[30]  M. H. Reddy, Application of algal culture technology for carbon dioxide and flue gas emission control, Master of Science Thesis, Arizona State University, 2002, http://www4.eas.asu.edu/pwest/Theses_Diss/Madhu_Thesis%20Algae%20Photosynthesis.pdf.
[31]  K. L. Kadam, “Microalgae production from power plant flue gas: environmental implications on a life cycle basis,” Tech. Rep. TP-510-29417, National Renewable Energy Laboratory, Golden, Colo, USA, 2001.
[32]  K. L. Kadam, “Power plant flue gas as a source of for microalgae cultivation: economic impact of different process options,” Energy Conversion and Management, vol. 38, supplement 1, pp. S505–S510, 1997.
[33]  ACF Greenhouses, September, 2008, http://www.littlegreenhouse.com/heat-calc.shtml.
[34]  Weather.com, Syracuse monthly average temperatures, November, 2008, http://www.weather.com/outlook/driving/interstate/wxclimatology/monthly/graph/13201?from=month_bottomnav_driving.
[35]  J. M. Lidell, “Extraction of triglycerides from microorganisms,” US Patent no. 6180376, 2001, http://www.patentstorm.us/patents/6180376/description.html.
[36]  E. M. Grima, E.-H. Belarbi, F. G. A. Fernandez, A. R. Medina, and Y. Chisti, “Recovery of microalgal biomass and metabolites: process options and economics,” Biotechnology Advances, vol. 20, no. 7-8, pp. 491–515, 2003.
[37]  S. Sanford, “Greenhouse unit heaters: types, placement, and efficiency,” 2008, http://learningstore.uwex.edu/pdf/A3784-15.pdf.
[38]  R. Dominguez-Faus, S. E. Powers, J. G. Burken, and P. J. Alvarez, “The water footprint of biofuels: a drink or drive issue?” Environmental Science and Technology, vol. 43, no. 9, pp. 3005–3010, 2009.
[39]  National Research Council, Water Implications of Biofuels Production in the United States, National Academies Press, Washington, DC, USA, 2008.
[40]  J. U. Grobbelaar, “Algal nutrition,” in Handbook of Microalgal Culture: Biotechnology and Applied Phycology, A. Richmond, Ed., Blackwell Publishing, Israel, 2004.
[41]  DOE Energy Information Agency, New York Electricity Profile, 2007, http://www.eia.doe.gov/cneaf/electricity/st_profiles/new_york.html.
[42]  H. Huo, M. Wang, C. Bloyd, and V. Putsche, “Life-cycle assessment of energy and greenhouse gas effects of soybean-derived biodiesel and renewable fuels,” Environmental Science and Technology, vol. 43, no. 3, pp. 750–754, 2008.
[43]  Environmental Protection Agency. Health and Environmental Effects of Particulate Matter, December, 2008, http://www.epa.gov/ttncaaa1/naaqsfin/pmhealth.html.
[44]  J. A. Duffie and W. A. Beckman, Solar Engineering of Thermal Processes, Wiley, New York, NY, USA, 1980.
[45]  B. Y. H. Liu and R. C. Jordan, “The interrelationship and characteristic distribution of direct, diffuse and total solar radiation,” Solar Energy, vol. 4, no. 3, pp. 1–19, 1960.
[46]  Sunlit Design, Solar Hour Angle, October, 2008, http://www.sunlit-design.com/infosearch/hourangle.php.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133