全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Process Optimization for Biodiesel Production from Corn Oil and Its Oxidative Stability

DOI: 10.1155/2010/518070

Full-Text   Cite this paper   Add to My Lib

Abstract:

Response surface methodology (RSM) based on central composite design (CCD) was used to optimize biodiesel production process from corn oil. The process variables, temperature and catalyst concentration were found to have significant influence on biodiesel yield. The optimum combination derived via RSM for high corn oil methyl ester yield (99.48%) was found to be 1.18%?wt catalyst concentration at a reaction temperature of C. To determine how long biodiesel can safely be stored, it is desirable to have a measurement for the stability of the biodiesel against such oxidation. Storage time and oxygen availability have been considered as possible factors influencing oxidative instability. Biodiesel from corn oil was stored for a period of 30 months, and the physico-chemical parameters of samples were measured at regular interval of time. Results show that the acid value (AV), peroxide value (PV), and viscosity ( ) increased while the iodine value (IV) decreased. These parameters changed very significantly when the sample was stored under normal oxygen atmosphere. However, the , AV, and IV of the biodiesel sample which was stored under argon atmosphere were within the limit by the European specifications (EN 14214). 1. Introduction In the last few years, the world’s energy demand is increasing due to the needs from the global economic development and population growth. However, the most important part of this energy currently used is the fossil energy sources. The problem is fossil fuels are nonrenewable. They are limited in supply and will one day be depleted. There is an increased interest in alternative renewable fuels. As biodiesel is an environmentally friendly fuel, it is the best candidate to replace fossil-diesel, which has lower emissions than that of fossil-diesel, it is biodegradable, nontoxic, and essentially free of sulphur and aromatics [1]. However, only nitrogen oxides increase using biodiesel as fuels [2, 3]. Renewable feedstocks such as vegetable oils and animal fats have been used as raw materials for biodiesel production [4]. The general way to produce biodiesel fuels is transesterification of fat or oil triacylglycerols with short-chain alcohol such as methanol or ethanol in presence of alkaline or acid catalysts [5–7]. Vegetable oils are promising feedstocks for biodiesel production since they are renewable origin and can be produced on a large scale. More than 95% of biodiesel production feedstocks come from edible oils since they are varying considerably with location according to climate and availability. In the United States, soybean

References

[1]  F. Staat and E. Vallet, “Vegetable oil methyl ester as a diesel substitute,” Chemistry & Industry, vol. 21, pp. 856–863, 1994.
[2]  M. P. Dorado, E. Ballesteros, J. M. Arnal, J. Gomez, and F. J. L. Gimenez, “Testing waste olive oil methyl ester as a fuel in a diesel engine,” Energy & Fuels, vol. 17, no. 6, pp. 1560–1565, 2003.
[3]  N. Usta, “An experimental study on performance and exhaust emissions of a diesel engine fuelled with tobacco seed oil methyl ester,” Energy Conversion and Management, vol. 46, no. 15-16, pp. 2373–2386, 2005.
[4]  S. P. Singh and D. Singh, “Biodiesel production through the use of different sources and characterization of oils and their esters as the substitute of diesel: a review,” Renewable and Sustainable Energy Reviews, vol. 14, no. 1, pp. 200–216, 2010.
[5]  J. M. Marchetti, V. U. Miguel, and A. F. Errazu, “Possible methods for biodiesel production,” Renewable and Sustainable Energy Reviews, vol. 11, pp. 1300–1311, 2007.
[6]  G. Vicente, M. Martínez, and J. Aracil, “Integrated biodiesel production: a comparison of different homogenous catalysts systems,” Bioresource Technology, vol. 92, pp. 297–305, 2004.
[7]  Y. C. Sharma and B. Singh, “Development of biodiesel from karanja, a tree found in rural India,” Fuel, vol. 87, no. 8-9, pp. 1740–1742, 2008.
[8]  G. Knothe, “Current perspectives on biodiesel,” Information, vol. 13, no. 12, pp. 900–903, 2002.
[9]  H. Shi and Z. Bao, “Direct preparation of biodiesel from rapeseed oil leached by two-phase solvent extraction,” Bioresource Technology, vol. 99, no. 18, pp. 9025–9028, 2008.
[10]  F. Ferella, G. Mazziotti, I. De Michelis, V. Stanisci, and F. Vegliò, “Optimization of the transesterification reaction in biodiesel production,” Fuel, vol. 89, pp. 36–42, 2010.
[11]  S. V. Ghadge and H. Raheman, “Process optimization for biodiesel production from mahua (Madhuca indica) oil using response surface methodology,” Bioresource Technology, vol. 97, no. 3, pp. 379–384, 2006.
[12]  A. K. Tiwaria, A. Kumara, and H. Raheman, “Biodiesel production from jatropha oil (Jatropha curcas) with high free fatty acids: an optimized process,” Biomass and Bioenergy, vol. 31, no. 8, pp. 569–575, 2007.
[13]  GS AgriFuels to Convert Corn Oil into Biodiesel at Ethanol Facilities, GS AgriFuels Corporation, New York, NY, USA, 2006.
[14]  R. O. Dunn and G. Knothe, “Oxidative stability of biodiesel in blends with jet fuel by analysis of oil stability index,” Journal of the American Oil Chemist's Society, vol. 80, no. 10, pp. 1047–1048, 2003.
[15]  F. D. Gunstone and T. P. Hilditch, “The union of gaseous oxygen with methyl oleate, linoleate, and linolenate,” Journal of the Chemical Society, pp. 836–841, 1945.
[16]  A. Bouaid, M. Martínez, and J. Aracil, “Long storage stability of biodiesel from vegetable and used frying oils,” Fuel, vol. 86, no. 16, pp. 2596–2602, 2007.
[17]  A. Bouaid, M. Martínez, and J. Aracil, “Production of biodiesel from bioethanol and Brassica carinata oil: oxidation stability study,” Bioresource Technology, vol. 100, no. 7, pp. 2234–2239, 2009.
[18]  P. Bondioli, A. Gasparoli, L. D. Bella, and T. Silvia, “Evaluation of biodiesel storage stability using reference methods,” European Journal of Lipid Science and Technology, vol. 104, no. 12, pp. 777–784, 2002.
[19]  B. R. Moser, “Comparative oxidative stability of fatty acid alkyl esters by accelerated methods,” Journal of the American Oil Chemist's Society, vol. 86, no. 7, pp. 699–706, 2009.
[20]  R. O. Dunn, “Effect of oxidation under accelerated conditions on fuel properties of methyl soyate (biodiesel),” Journal of the American Oil Chemist's Society, vol. 79, no. 9, pp. 915–920, 2002.
[21]  M. H. Chahine and R. F. Macneill, “Effect of stabilization of crude whale oil with tertiary-butylhidroquinone and other antioxidants upon keeping quality of resultant deodorized oil. A feasibility study,” Journal of the American Oil Chemist's Society, vol. 51, no. 3, pp. 37–41, 1974.
[22]  G. Box and J. Hunter, “Response surface methods,” in Statistics for Experiments Part IV: Building Models and Using Them, chapter 5, John Wiley & Sons, New York, NY, USA, 1978.
[23]  G. Knothe, “Analyzing biodiesel: standards and other methods,” Journal of the American Oil Chemist's Society, vol. 83, no. 10, pp. 823–833, 2006.
[24]  T. Garcia, A. Coteron, M. Martínez, and J. Aracil, “Optimization of the enzymatic synthesis of isopropyl palmitate using a central composite design,” Transactions of Chemical Engineers, vol. 73, pp. 140–144, 1995.
[25]  G. Vicente, A. Coteron, M. Martínez, and J. Aracil, “Application of the factorial design of experiments and response surface methodology to optimize biodiesel production,” Industrial Crops and Products, vol. 8, no. 1, pp. 29–35, 1998.
[26]  A. Monyem, M. Canakci, and J. H. Van Gerpen, “Investigation of biodiesel thermal stability under simulated in-use conditions,” Applied Engineering in Agriculture, vol. 16, pp. 373–378, 2000.
[27]  G. Knothe, “Structure indices in FA chemistry. How relevant is the iodine value?” Journal of the American Oil Chemist's Society, vol. 79, no. 9, pp. 847–854, 2002.
[28]  P. Bondioli, A. Gasparoli, L. D. Bella, S. Tagliabue, and G. Toso, “Biodiesel stability under commercial storage conditions over one year,” European Journal of Lipid Science and Technology, vol. 105, no. 12, pp. 735–741, 2003.
[29]  H. A. Moser, P. C. Cooney, C. D. Evans, and J. C. Cowan, “The stability of soybean oil: effect of time and temperature on deodorization,” Journal of the American Oil Chemist's Society, vol. 43, no. 11, pp. 632–634, 1966.
[30]  G. Knothe and K. R. Steidley, “Kinematic viscosity of biodiesel fuel components and related compounds. Influence of compound structure and comparison to petrodiesel fuel components,” Fuel, vol. 84, no. 9, pp. 1059–1065, 2005.
[31]  M. W. Formo, E. Jungermann, F. Noris, and N. O. V. Sonntag, “Bailey&s Industrial Oil and Fat Products,” in Bailey's Industrial Oil and Fat Products, D. Swern, Ed., vol. 1, pp. 698–711, John Wiley & Sons, New York, NY, USA, 4th edition, 1979.
[32]  G. Knothe and R. O. Dunn, “Dependence of oil stability index of fatty compounds on their structure and concentration and presence of metals,” Journal of the American Oil Chemist's Society, vol. 80, no. 10, pp. 1021–1026, 2003.
[33]  S. Naz, H. Sheikh, R. Siddiqi, and S. A. Sayeed, “Oxidative stability of olive, corn and soybean oil under different conditions,” Food Chemistry, vol. 88, no. 2, pp. 253–259, 2004.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133