全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

TCA Cycle Defects and Cancer: When Metabolism Tunes Redox State

DOI: 10.1155/2012/161837

Full-Text   Cite this paper   Add to My Lib

Abstract:

Inborn defects of the tricarboxylic acid (TCA) cycle enzymes have been known for more than twenty years. Until recently, only recessive mutations were described which, although resulted in severe multisystem syndromes, did not predispose to cancer onset. In the last ten years, a causal role in carcinogenesis has been documented for inherited and acquired alterations in three TCA cycle enzymes, succinate dehydrogenase (SDH), fumarate hydratase (FH), and isocitrate dehydrogenase (IDH), pointing towards metabolic alterations as the underlying hallmark of cancer. This paper summarizes the neoplastic alterations of the TCA cycle enzymes focusing on the generation of pseudohypoxic phenotype and the alteration of epigenetic homeostasis as the main tumor-promoting effects of the TCA cycle affecting defects. Moreover, we debate on the ability of these mutations to affect cellular redox state and to promote carcinogenesis by impacting on redox biology. 1. Introduction Cancer cells differ from normal ones due to a plethora of oncogenes-driven biochemical changes designed to sustain an high rate of growth and proliferation [1]. The first tumor-specific alteration in metabolism was reported at the beginning of the 20th century by Warburg [2]. His observations demonstrated that cancer cell metabolism relies on an increased glycolytic flux maintained even in the presence of oxygen (“aerobic glycolysis” or “Warburg effect”), without an associated increase in oxidative phosphorylation rate. The switch from respiration to glycolysis has usually been considered a consequence, rather than a cause, of cancer. However, in the last decade, the discovery that inherited and acquired alterations in some enzymes of tricarboxylic acid (TCA) cycle have a causal role in carcinogenesis has changed this viewpoint, pointing towards altered metabolism as the underlying hallmark of neoplastic transformation. These alterations consist of germline defects in genes encoding subunits of SDH and FH, as well as somatic mutations in coding sequence for IDH. Together with metabolomics studies documenting the alteration of HIF-dependent signaling pathway and epigenetic dynamics as main tumor-promoting effects of these mutations, a mounting body of evidence also supports how alterations in the TCA cycle enzymes may favor tumorigenesis by impacting on cellular redox state. Therefore, in this paper, we summarize the prooncogenic defects in the TCA cycle enzymes discussing their involvement in the tuning of redox environment and the engagement of redox-dependent tumorigenic signaling. 2. Fundamentals

References

[1]  G. Kroemer and J. Pouyssegur, “Tumor cell metabolism: Cancer's Achilles' heel,” Cancer Cell, vol. 13, no. 6, pp. 472–482, 2008.
[2]  O. Warburg, “On the origin of cancer cells,” Science, vol. 123, no. 3191, pp. 309–314, 1956.
[3]  I. E. Scheffler, Mitochondria, John Wiley & Sons, 2nd edition, 2008.
[4]  D. R. Wise, P. S. Ward, J. E. Shay, et al., “Hypoxia promotes isocytrate dehydrogenase-dependent carboxylation of α-ketoglutarate to citrate to support cell growth and viability,” Proceedings of the National Academy of Sciences USA, vol. 108, no. 49, 19611 pages, 1961.
[5]  C. M. Metallo, P. A. Gameiro, E. L. Bell, et al., “Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia,” Nature, vol. 481, no. 7381, pp. 380–384, 2011.
[6]  A. R. Mullen, W. W. Wheaton, E. S. Jin, et al., “Reductive carboxylation supports growth in tumour cells with defective mitochondria,” Nature, vol. 481, no. 7381, pp. 385–388, 2011.
[7]  D. C. Wallace, W. Fan, and V. Procaccio, “Mitochondrial energetics and therapeutics,” Annual Review of Pathology, vol. 5, pp. 297–348, 2010.
[8]  C. Bardella, P. J. Pollard, and I. Tomlinson, “SDH mutations in cancer,” Biochimica et Biophysica Acta, vol. 1807, no. 11, pp. 1432–1443, 2011.
[9]  B. E. Baysal, R. E. Ferrell, J. E. Willett-Brozick et al., “Mutations in SDHD, a mitochondrial complex II gene, in hereditary paraganglioma,” Science, vol. 287, no. 5454, pp. 848–851, 2000.
[10]  S. Niemann and U. Müller, “Mutations in SDHC cause autosomal dominant paraganglioma, type 3,” Nature Genetics, vol. 26, no. 3, pp. 268–270, 2000.
[11]  D. Astuti, F. Latif, A. Dallol et al., “Gene mutations in the succinate dehydrogenase subunit SDHB cause susceptibility to familial pheochromocytoma and to familial paraganglioma,” American Journal of Human Genetics, vol. 69, no. 1, pp. 49–54, 2001.
[12]  B. E. Baysal, J. E. Willett-Brozick, E. C. Lawrence et al., “Prevalence of SDHB, SDHC, and SDHD germline mutations in clinic patients with head and neck paragangliomas,” Journal of Medical Genetics, vol. 39, no. 3, pp. 178–183, 2002.
[13]  H. X. Hao, O. Khalimonchuk, M. Schraders et al., “SDH5, a gene required for flavination of succinate dehydrogenase, is mutated in paraganglioma,” Science, vol. 325, no. 5944, pp. 1139–1142, 2009.
[14]  J. P. Bayley, H. P. M. Kunst, A. Cascon et al., “SDHAF2 mutations in familial and sporadic paraganglioma and phaeochromocytoma,” The Lancet Oncology, vol. 11, no. 4, pp. 366–372, 2010.
[15]  N. Burnichon, J. J. Brière, R. Libé et al., “SDHA is a tumor suppressor gene causing paraganglioma,” Human Molecular Genetics, vol. 19, no. 15, pp. 3011–3020, 2010.
[16]  E. Gottlieb and I. P. M. Tomlinson, “Mitochondrial tumour suppressors: a genetic and biochemical update,” Nature Reviews Cancer, vol. 5, no. 11, pp. 857–866, 2005.
[17]  A. B. Zinn, D. S. Kerr, and C. L. Hoppel, “Fumarase deficiency: a new cause of mitochondrial encephalomyopathy,” The New England Journal of Medicine, vol. 315, no. 8, pp. 469–475, 1986.
[18]  V. Launonen, O. Vierimaa, M. Kiuru et al., “Inherited susceptibility to uterine leiomyomas and renal cell cancer,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 6, pp. 3387–3392, 2001.
[19]  I. P. M. Tomlinson, N. A. Alam, A. J. Rowan et al., “Germline mutations in FH predispose to dominantly inherited uterine fibroids, skin leiomyomata and papillary renal cell cancer the multiple leiomyoma consortium,” Nature Genetics, vol. 30, no. 4, pp. 406–410, 2002.
[20]  L. G. Carvajal-Carmona, N. A. Alam, P. J. Pollard et al., “Adult leydig cell tumors of the testis caused by germline fumarate hydratase mutations,” The Journal of Clinical Endocrinology and Metabolism, vol. 91, no. 8, pp. 3071–3075, 2006.
[21]  H. J. Lehtonen, M. Kiuru, S. K. Ylisaukko-Oja et al., “Increased risk of cancer in patients with fumarate hydratase germline mutation,” Journal of Medical Genetics, vol. 43, no. 6, pp. 523–526, 2006.
[22]  A. King, M. A. Selak, and E. Gottlieb, “Succinate dehydrogenase and fumarate hydratase: linking mitochondrial dysfunction and cancer,” Oncogene, vol. 25, no. 34, pp. 4675–4682, 2006.
[23]  L. Dang, S. Jin, and S. M. Su, “IDH mutations in glioma and acute myeloid leukemia,” Trends in Molecular Medicine, vol. 16, no. 9, pp. 392–397, 2010.
[24]  D. W. Parsons, S. Jones, X. Zhang et al., “An integrated genomic analysis of human glioblastoma multiforme,” Science, vol. 321, no. 5897, pp. 1807–1812, 2008.
[25]  H. Yan, D. W. Parsons, G. Jin et al., “IDH1 and IDH2 mutations in gliomas,” The New England Journal of Medicine, vol. 360, no. 8, pp. 765–773, 2009.
[26]  R. A. Cairns, J. Iqbal, F. Lemonnier, et al., “IDH2 mutations are frequent in angioimmunoblastic T-cell lymphoma,” Blood, vol. 119, no. 8, pp. 1901–1903, 2012.
[27]  S. Abbas, S. Lugthart, F. G. Kavelaars et al., “Acquired mutations in the genes encoding IDH1 and IDH2 both are recurrent aberrations in acute myeloid leukemia: prevalence and prognostic value,” Blood, vol. 116, no. 12, pp. 2122–2126, 2010.
[28]  P. Paschka, R. F. Schlenk, V. I. Gaidzik et al., “IDH1 and IDH2 mutations are frequent genetic alterations in acute myeloid leukemia and confer adverse prognosis in cytogenetically normal acute myeloid leukemia with NPM1 mutation without FLT3 internal tandem duplication,” Journal of Clinical Oncology, vol. 28, no. 22, pp. 3636–3643, 2010.
[29]  M. R. Kang, M. S. Kim, J. E. Oh et al., “Mutational analysis of IDH1 codon 132 in glioblastomas and other common cancers,” International Journal of Cancer, vol. 125, no. 2, pp. 353–355, 2009.
[30]  K. E. Yen, M. A. Bittinger, S. M. Su, and V. R. Fantin, “Cancer-associated IDH mutations: biomarker and therapeutic opportunities,” Oncogene, vol. 29, no. 49, pp. 6409–6417, 2010.
[31]  L. Dang, D. W. White, S. Gross et al., “Cancer-associated IDH1 mutations produce 2-hydroxyglutarate,” Nature, vol. 462, no. 7274, pp. 739–744, 2009.
[32]  P. S. Ward, J. Patel, D. R. Wise et al., “The common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting α-ketoglutarate to 2-hydroxyglutarate,” Cancer Cell, vol. 17, no. 3, pp. 225–234, 2010.
[33]  A. P. Gimenez-Roqueplo, J. Favier, P. Rustin et al., “The R22X mutation of the SDHD gene in hereditary paraganglioma abolishes the enzymatic activity of complex II in the mitochondrial respiratory chain and activates the hypoxia pathway,” American Journal of Human Genetics, vol. 69, no. 6, pp. 1186–1197, 2001.
[34]  P. L. M. Dahia, K. N. Ross, M. E. Wright et al., “A HIf1α regulatory loop links hypoxia and mitochondrial signals in pheochromocytomas,” PLoS Genetics, vol. 1, no. 1, pp. 72–80, 2005.
[35]  S. Vanharanta, P. J. Pollard, H. J. Lehtonen et al., “Distinct expression profile in fumarate-hydratase-deficient uterine fibroids,” Human Molecular Genetics, vol. 15, no. 1, pp. 97–103, 2006.
[36]  M. A. Selak, S. M. Armour, E. D. MacKenzie et al., “Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-α prolyl hydroxylase,” Cancer Cell, vol. 7, no. 1, pp. 77–85, 2005.
[37]  A. Ozer and R. K. Bruick, “Non-heme dioxygenases: cellular sensors and regulators jelly rolled into one?” Nature Chemical Biology, vol. 3, no. 3, pp. 144–153, 2007.
[38]  J. S. Isaacs, J. J. Yun, D. R. Mole et al., “HIF overexpression correlates with biallelic loss of fumarate hydratase in renal cancer: novel role of fumarate in regulation of HIF stability,” Cancer Cell, vol. 8, no. 2, pp. 143–153, 2005.
[39]  J. Adam, E. Hatipoglu, L. O'Flaherty, et al., “Renal cyst formation in Fh1-deficient mice is independent of the Hif/Phd pathway: roles for fumarate in KEAP1 succination and Nrf2 signaling,” Cancer Cell, vol. 20, no. 4, pp. 524–537, 2011.
[40]  P. Koivunen, S. Lee, C. G. Duncan, C. G. Kaelin Jr., et al., “Transformation by the (R)-enantiomer of 2-hydroxyglutarate linked to EGLN activation,” Nature, vol. 483, pp. 484–488, 2012.
[41]  S. Lee, E. Nakamura, H. Yang et al., “Neuronal apoptosis linked to EglN3 prolyl hydroxylase and familial pheochromocytoma genes: developmental culling and cancer,” Cancer Cell, vol. 8, no. 2, pp. 155–167, 2005.
[42]  S. Schlisio, R. S. Kenchappa, L. C. W. Vredeveld et al., “The kinesin KIF1Bβ acts downstream from EglN3 to induce apoptosis and is a potential 1p36 tumor suppressor,” Genes and Development, vol. 22, no. 7, pp. 884–893, 2008.
[43]  P. Chi, C. D. Allis, and G. G. Wang, “Covalent histone modifications-miswritten, misinterpreted and mis-erased in human cancers,” Nature Reviews Cancer, vol. 10, no. 7, pp. 457–469, 2010.
[44]  E. Caffarelli and P. Filetici, “Epigenetic regulation in cancer development,” Frontiers in Bioscience, vol. 1, no. 17, pp. 2682–2694, 2011.
[45]  H. Hou and H. Yu, “Structural insights into histone lysine demethylation,” Current Opinion in Structural Biology, vol. 20, no. 6, pp. 739–748, 2010.
[46]  A. M. Cervera, J. P. Bayley, P. Devilee, and K. J. McCreath, “Inhibition of succinate dehydrogenase dysregulates histone modification in mammalian cells,” Molecular Cancer, vol. 8, article 89, 2009.
[47]  E. H. Smith, R. Janknecht, and J. L. Maher III, “Succinate inhibition of α-ketoglutarate-dependent enzymes in a yeast model of paraganglioma,” Human Molecular Genetics, vol. 16, no. 24, pp. 3136–3148, 2007.
[48]  R. Chowdhury, K. K. Yeoh, Y. M. Tian et al., “The oncometabolite 2-hydroxyglutarate inhibits histone lysine demethylases,” EMBO Reports, vol. 12, no. 5, pp. 463–469, 2011.
[49]  M. E. Figueroa, O. Abdel-Wahab, C. Lu et al., “Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation,” Cancer Cell, vol. 18, no. 6, pp. 553–567, 2010.
[50]  J. Füllgrabe, E. Kavanagh, and B. Joseph, “Histone onco-modifications,” Oncogene, vol. 30, no. 31, pp. 3391–3403, 2011.
[51]  P. Sarkies and J. E. Sale, “Cellular epigenetic stability and cancer,” Trends in Genetics, vol. 28, no. 3, pp. 118–127, 2012.
[52]  T. P. Szatrowski and C. F. Nathan, “Production of large amounts of hydrogen peroxide by human tumor cells,” Cancer Research, vol. 51, no. 3, pp. 794–798, 1991.
[53]  S. Toyokuni, “Persistent oxidative stress in cancer,” FEBS Letters, vol. 358, no. 1, pp. 1–3, 1995.
[54]  S. Kawanishi, Y. Hiraku, S. Pinlaor, and N. Ma, “Oxidative and nitrative DNA damage in animals and patients with inflammatory diseases in relation to inflammation-related carcinogenesis,” Biological Chemistry, vol. 387, no. 4, pp. 365–372, 2006.
[55]  N. Ishii, M. Fujii, P. S. Hartman et al., “A mutation in succinate dehydrogenase cytochrome b causes oxidative stress and ageing in nematodes,” Nature, vol. 394, no. 6694, pp. 694–697, 1998.
[56]  N. Senoo-Matsuda, K. Yasuda, M. Tsuda et al., “A defect in the cytochrome b large subunit in complex II causes both superoxide anion overproduction and abnormal energy metabolism in caenorhabditis elegans,” The Journal of Biological Chemistry, vol. 276, no. 45, pp. 41553–41558, 2001.
[57]  T. Ishii, K. Yasuda, A. Akatsuka, O. Hino, P. S. Hartman, and N. Ishii, “A mutation in the SDHC gene of complex II increases oxidative stress, resulting in apoptosis and tumorigenesis,” Cancer Research, vol. 65, no. 1, pp. 203–209, 2005.
[58]  R. D. Guzy, B. Sharma, E. Bell, N. S. Chandel, and P. T. Schumacker, “Loss of the SdhB, but not the SdhA, subunit of complex II triggers reactive oxygen species-dependent hypoxia-inducible factor activation and tumorigenesis,” Molecular and Cellular Biology, vol. 28, no. 2, pp. 718–731, 2008.
[59]  N. S. Chandel, E. Maltepe, E. Goldwasser, C. E. Mathieu, M. C. Simon, and P. T. Schumacker, “Mitochondrial reactive oxygen species trigger hypoxia-induced transcription,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 20, pp. 11715–11720, 1998.
[60]  N. S. Chandel, D. S. McClintock, C. E. Feliciano et al., “Reactive oxygen species generated at mitochondrial Complex III stabilize hypoxia-inducible factor-1α during hypoxia: a mechanism of O2 sensing,” Journal of Biological Chemistry, vol. 275, no. 33, pp. 25130–25138, 2000.
[61]  G. Filomeni, G. Rotilio, and M. R. Ciriolo, “Disulfide relays and phosphorylative cascades: partners in redox-mediated signaling pathways,” Cell Death and Differentiation, vol. 12, no. 12, pp. 1555–1563, 2005.
[62]  Z. J. Reitman, G. Jin, E. D. Karoly et al., “Profiling the effects of isocitrate dehydrogenase 1 and 2 mutations on the cellular metabolome,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 8, pp. 3270–3275, 2011.
[63]  J. M. Matés, J. A. Segura, J. A. Campos-Sandoval et al., “Glutamine homeostasis and mitochondrial dynamics,” International Journal of Biochemistry and Cell Biology, vol. 41, no. 10, pp. 2051–2061, 2009.
[64]  W. Hu, C. Zhang, R. Wu, Y. Sun, A. Levine, and Z. Feng, “Glutaminase 2, a novel p53 target gene regulating energy metabolism and antioxidant function,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 16, pp. 7455–7460, 2010.
[65]  S. Zhao, Y. Lin, W. Xu et al., “Glioma-derived mutations in IDH1 dominantly inhibit IDH1 catalytic activity and induce HIF-1α,” Science, vol. 324, no. 5924, pp. 261–265, 2009.
[66]  A. Latini, K. Scussiato, R. B. Rosa et al., “D-2-hydroxyglutaric acid induces oxidative stress in cerebral cortex of young rats,” European Journal of Neuroscience, vol. 17, no. 10, pp. 2017–2022, 2003.
[67]  S. K?lker, V. Pawlak, B. Ahlemeyer et al., “NMDA receptor activation and respiratory chain complex V inhibition contribute to neurodegeneration in D-2-hydroxyglutaric aciduria,” European Journal of Neuroscience, vol. 16, no. 1, pp. 21–28, 2002.
[68]  S. Sudarshan, C. Sourbier, H. S. Kong et al., “Fumarate hydratase deficiency in renal cancer induces glycolytic addiction and hypoxia-inducible transcription factor 1α stabilization by glucose-dependent generation of reactive oxygen species,” Molecular and Cellular Biology, vol. 29, no. 15, pp. 4080–4090, 2009.
[69]  L. O'Flaherty, J. Adam, L. C. Heather et al., “Dysregulation of hypoxia pathways in fumarate hydratase-deficient cells is independent of defective mitochondrial metabolism,” Human Molecular Genetics, vol. 19, no. 19, pp. 3844–3851, 2010.
[70]  A. Ooi, J. C. Wong, D. Petillo, et al., “An antioxidant response phenotype shared between hereditary and sporadic type 2 papillary renal cell carcinoma,” Cancer Cell, vol. 20, no. 4, pp. 511–523, 2011.
[71]  N. F. Villeneuve, A. Lau, and D. D. Zhang, “Regulation of the Nrf2-keap1 antioxidant response by the ubiquitin proteasome system: an insight into cullin-ring ubiquitin ligases,” Antioxidants and Redox Signaling, vol. 13, no. 11, pp. 1699–1712, 2010.
[72]  J. D. Hayes and M. McMahon, “NRF2 and KEAP1 mutations: permanent activation of an adaptive response in cancer,” Trends in Biochemical Sciences, vol. 34, no. 4, pp. 176–188, 2009.
[73]  G. M. Denicola, F. A. Karreth, T. J. Humpton et al., “Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis,” Nature, vol. 475, no. 7354, pp. 106–110, 2011.
[74]  C. Frezza, L. Zheng, O. Folger, et al., “Haem oxygenase is synthetically lethal with the tumour suppressor fumarate hydratase,” Nature, vol. 477, no. 7363, pp. 225–228, 2011.
[75]  A. Lau, N. F. Villeneuve, Z. Sun, P. K. Wong, and D. D. Zhang, “Dual roles of Nrf2 in cancer,” Pharmacological Research, vol. 58, no. 5-6, pp. 262–270, 2008.
[76]  Y. Inami, S. Waguri, A. Sakamoto et al., “Persistent activation of Nrf2 through p62 in hepatocellular carcinoma cells,” The Journal of Cell Biology, vol. 193, no. 2, pp. 275–284, 2011.
[77]  E. C. Pfaffenroth and W. M. Linehan, “Genetic basis for kidney cancer: opportunity for disease-specific approaches to therapy,” Expert Opinion on Biological Therapy, vol. 8, no. 6, pp. 779–790, 2008.
[78]  N. Raimundo, J. Ahtinen, K. Fumi? et al., “Differential metabolic consequences of fumarate hydratase and respiratory chain defects,” Biochimica et Biophysica Acta, vol. 1782, no. 5, pp. 287–294, 2008.
[79]  F. Q. Schafer and G. R. Buettner, “Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple,” Free Radical Biology and Medicine, vol. 30, no. 11, pp. 1191–1212, 2001.
[80]  M. Diehn, R. W. Cho, N. A. Lobo et al., “Association of reactive oxygen species levels and radioresistance in cancer stem cells,” Nature, vol. 458, no. 7239, pp. 780–783, 2009.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133