全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

The Physiological Role of Mitophagy: New Insights into Phosphorylation Events

DOI: 10.1155/2012/354914

Full-Text   Cite this paper   Add to My Lib

Abstract:

Mitochondria play an essential role in oxidative phosphorylation, fatty acid oxidation, and the regulation of apoptosis. However, this organelle also produces reactive oxygen species (ROS) that continually inflict oxidative damage on mitochondrial DNA, proteins, and lipids, which causes further production of ROS. To oppose this oxidative stress, mitochondria possess quality control systems that include antioxidant enzymes and the repair or degradation of damaged mitochondrial DNA and proteins. If the oxidative stress exceeds the capacity of the mitochondrial quality control system, it seems that autophagy degrades the damaged mitochondria to maintain cellular homeostasis. Indeed, recent evidence from yeast to mammals indicates that the autophagy-dependent degradation of mitochondria (mitophagy) contributes to eliminate dysfunctional, aged, or excess mitochondria. In this paper, we describe the molecular processes and regulatory mechanisms of mitophagy in yeast and mammalian cells. 1. Selective Degradation of Mitochondria by Autophagy Autophagy is a catabolic process that degrades cytoplasmic components and organelles and is conserved in almost all eukaryotes. Autophagy is initiated in response to cellular stresses such as nutrient starvation, oxidative stress, infection, or inflammatory stimuli. Upon its induction, a cup-shaped double-membrane structure, called an isolation membrane (or phagophore), emerges in the cytoplasm, then the isolation membrane elongates with curvature and finally becomes enclosed, forming an autophagosome containing cytoplasmic components. Subsequently, autophagosomes fuse with lysosomes/vacuoles, and lysosomal hydrolases degrade the sequestered material [1–5]. This process facilitates physiological processes such as survival during starvation, clearance of dysfunctional or aggregated proteins and organelles, development, differentiation, and aging [6–8]. In addition to the nonselective degradation of cytoplasmic components, autophagy can selectively degrade specific organelles or proteins. These include peroxisomes, endoplasmic reticulum, ribosomes, the nucleus, intracellular pathogens, protein aggregates, lipid droplets, and secretory granules. These catabolic processes are termed pexophagy, reticulophagy (ERphagy), ribophagy, nucleophagy, xenophagy, aggrephagy, lipophagy, and zymophagy, respectively. Similarly, the yeast Cvt complex (a protein complex comprising aminopeptidase I (Ape1) and alpha-mannosidase (Ams1)) is delivered to vacuoles via an autophagy-like process; Ape1 and Ams1 are processed and activated in the

References

[1]  T. O. Berg, M. Fengsrud, P. E. Str?mhaug, T. Berg, and P. O. Seglen, “Isolation and characterization of rat liver amphisomes: evidence for fusion of autophagosomes with both early and late endosomes,” Journal of Biological Chemistry, vol. 273, no. 34, pp. 21883–21892, 1998.
[2]  W. A. Dunn Jr., “Studies on the mechanisms of autophagy: formation of the autophagic vacuole,” Journal of Cell Biology, vol. 110, no. 6, pp. 1923–1933, 1990.
[3]  H. Nakatogawa, K. Suzuki, Y. Kamada, and Y. Ohsumi, “Dynamics and diversity in autophagy mechanisms: lessons from yeast,” Nature Reviews Molecular Cell Biology, vol. 10, no. 7, pp. 458–467, 2009.
[4]  Z. Yang and D. J. Klionsky, “Eaten alive: a history of macroautophagy,” Nature Cell Biology, vol. 12, no. 9, pp. 814–822, 2010.
[5]  N. Mizushima, A. Yamamoto, M. Hatano et al., “Dissection of autophagosome formation using Apg5-deficient mouse embryonic stem cells,” Journal of Cell Biology, vol. 152, no. 4, pp. 657–668, 2001.
[6]  D. C. Rubinsztein, “The roles of intracellular protein-degradation pathways in neurodegeneration,” Nature, vol. 443, no. 7113, pp. 780–786, 2006.
[7]  N. Mizushima, B. Levine, A. M. Cuervo, and D. J. Klionsky, “Autophagy fights disease through cellular self-digestion,” Nature, vol. 451, no. 7182, pp. 1069–1075, 2008.
[8]  B. Levine, N. Mizushima, and H. W. Virgin, “Autophagy in immunity and inflammation,” Nature, vol. 469, no. 7330, pp. 323–335, 2011.
[9]  S. L. Clark Jr., “Cellular differentiation in the kidneys of newborn mice studies with the electron microscope,” The Journal of Biophysical and Biochemical Cytology, vol. 3, no. 3, pp. 349–362, 1957.
[10]  K. Takeshige, M. Baba, S. Tsuboi, T. Noda, and Y. Ohsumi, “Autophagy in yeast demonstrated with proteinase-deficient mutants and conditions for its induction,” Journal of Cell Biology, vol. 119, no. 2, pp. 301–311, 1992.
[11]  G. Twig, A. Elorza, A. J. A. Molina et al., “Fission and selective fusion govern mitochondrial segregation and elimination by autophagy,” EMBO Journal, vol. 27, no. 2, pp. 433–446, 2008.
[12]  I. Kim, S. Rodriguez-Enriquez, and J. J. Lemasters, “Selective degradation of mitochondria by mitophagy,” Archives of Biochemistry and Biophysics, vol. 462, no. 2, pp. 245–253, 2007.
[13]  I. Kim and J. J. Lemasters, “Mitophagy selectively degrades individual damaged mitochondria after photoirradiation,” Antioxidants and Redox Signaling, vol. 14, no. 10, pp. 1919–1928, 2011.
[14]  R. L. Schweers, J. Zhang, M. S. Randall et al., “NIX is required for programmed mitochondrial clearance during reticulocyte maturation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 49, pp. 19500–19505, 2007.
[15]  H. Sandoval, P. Thiagarajan, S. K. Dasgupta et al., “Essential role for Nix in autophagic maturation of erythroid cells,” Nature, vol. 454, no. 7201, pp. 232–235, 2008.
[16]  Y. Nishida, S. Arakawa, K. Fujitani et al., “Discovery of Atg5/Atg7-independent alternative macroautophagy,” Nature, vol. 461, no. 7264, pp. 654–658, 2009.
[17]  J. Zhang, M. S. Randall, M. R. Loyd et al., “Mitochondrial clearance is regulated by Atg7-dependent and -independent mechanisms during reticulocyte maturation,” Blood, vol. 114, no. 1, pp. 157–164, 2009.
[18]  Y. Zhang, S. Goldman, R. Baerga, Y. Zhao, M. Komatsu, and S. Jin, “Adipose-specific deletion of autophagy-related gene 7 (atg7) in mice reveals a role in adipogenesis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 47, pp. 19860–19865, 2009.
[19]  I. Ki??ova, B. Salin, J. Schaeffer, S. Bhatia, S. Manon, and N. Camougrand, “Selective and non-selective autophagic degradation of mitochondria in yeast,” Autophagy, vol. 3, no. 4, pp. 329–336, 2007.
[20]  K. Okamoto, N. Kondo-Okamoto, and Y. Ohsumi, “Mitochondria-anchored receptor Atg32 mediates degradation of mitochondria via selective autophagy,” Developmental Cell, vol. 17, no. 1, pp. 87–97, 2009.
[21]  T. Kanki, K. Wang, Y. Cao, M. Baba, and D. J. Klionsky, “Atg32 is a mitochondrial protein that confers selectivity during mitophagy,” Developmental Cell, vol. 17, no. 1, pp. 98–109, 2009.
[22]  T. Shintani, W. P. Huang, P. E. Stromhaug, and D. J. Klionsky, “Mechanism of cargo selection in the cytoplasm to vacuole targeting pathway,” Developmental Cell, vol. 3, no. 6, pp. 825–837, 2002.
[23]  J. C. Farré, R. Manjithaya, R. D. Mathewson, and S. Subramani, “PpAtg30 tags peroxisomes for turnover by selective autophagy,” Developmental cell, vol. 14, no. 3, pp. 365–376, 2008.
[24]  T. Kanki and D. J. Klionsky, “Mitophagy in yeast occurs through a selective mechanism,” Journal of Biological Chemistry, vol. 283, no. 47, pp. 32386–32393, 2008.
[25]  T. Kanki, K. Wang, M. Baba et al., “A genomic screen for yeast mutants defective in selective mitochondria autophagy,” Molecular Biology of the Cell, vol. 20, no. 22, pp. 4730–4738, 2009.
[26]  K. Mao, K. Wang, M. Zhao, T. Xu, and D. J. Klionsky, “Two MAPK-signaling pathways are required for mitophagy in Saccharomyces cerevisiae,” Journal of Cell Biology, vol. 193, no. 4, pp. 755–767, 2011.
[27]  Y. Aoki, T. Kanki, Y. Hirota et al., “Phosphorylation of serine 114 on Atg32 mediates mitophagy,” Molecular Biology of the Cell, vol. 22, no. 17, pp. 3206–3217, 2011.
[28]  R. Manjithaya, S. Jain, J. C. Farré, and S. Subramani, “A yeast MAPK cascade regulates pexophagy but not other autophagy pathways,” Journal of Cell Biology, vol. 189, no. 2, pp. 303–310, 2010.
[29]  T. Kanki, K. Wang, and D. J. Klionsky, “A genomic screen for yeast mutants defective in mitophagy,” Autophagy, vol. 6, no. 2, pp. 278–280, 2010.
[30]  R. Tal, G. Winter, N. Ecker, D. J. Klionsky, and H. Abeliovich, “Aup1p, a yeast mitochondrial protein phosphatase homolog, is required for efficient stationary phase mitophagy and cell survival,” Journal of Biological Chemistry, vol. 282, no. 8, pp. 5617–5624, 2007.
[31]  N. Mendl, A. Occhipinti, M. Müller, P. Wild, I. Dikic, and A. S. Reichert, “Mitophagy in yeast is independent of mitochondrial fission and requires the stress response gene WHI2,” Journal of Cell Science, vol. 124, no. 8, pp. 1339–1350, 2011.
[32]  I. Kissova, M. Deffieu, S. Manon, and N. Camougrand, “Uth1p is involved in the autophagic degradation of mitochondria,” Journal of Biological Chemistry, vol. 279, no. 37, pp. 39068–39074, 2004.
[33]  M. Müller and A. S. Reichert, “Mitophagy, mitochondrial dynamics and the general stress response in yeast,” Biochemical Society Transactions, vol. 39, no. 5, pp. 1514–1519, 2011.
[34]  D. Journo, A. Mor, and H. Abeliovich, “Aup1-mediated regulation of Rtg3 during mitophagy,” Journal of Biological Chemistry, vol. 284, no. 51, pp. 35885–35895, 2009.
[35]  M. Deffieu, I. Bhatia-Ki??ová, B. Salin, A. Galinier, S. Manon, and N. Camougrand, “Glutathione participates in the regulation of mitophagy in yeast,” Journal of Biological Chemistry, vol. 284, no. 22, pp. 14828–14837, 2009.
[36]  M. Priault, B. Salin, J. Schaeffer, F. M. Vallette, J. P. di Rago, and J. C. Martinou, “Impairing the bioenergetic status and the biogenesis of mitochondria triggers mitophagy in yeast,” Cell Death and Differentiation, vol. 12, no. 12, pp. 1613–1621, 2005.
[37]  K. Nowikovsky, S. Reipert, R. J. Devenish, and R. J. Schweyen, “Mdm38 protein depletion causes loss of mitochondrial K+/ H+ exchange activity, osmotic swelling and mitophagy,” Cell Death and Differentiation, vol. 14, no. 9, pp. 1647–1656, 2007.
[38]  Y. Zhang, H. Qi, R. Taylor, W. Xu, L. F. Liu, and S. Jin, “The role of autophagy in mitochondria maintenance: characterization of mitochondrial functions in autophagy-deficient S. cerevisiae strains,” Autophagy, vol. 3, no. 4, pp. 337–346, 2007.
[39]  Y. Kurihara, T. Kanki, Y. Aoki et al., “Mitophagy plays an essential role in reducing mitochondrial production of reactive oxygen species and mutation of mitochondrial DNA by maintaining mitochondrial quantity and quality in yeast,” The Journal of Biological Chemistry, vol. 287, no. 5, pp. 3265–3272, 2012.
[40]  S. W. Suzuki, J. Onodera, and Y. Ohsumi, “Starvation induced cell death in autophagy-defective yeast mutants is caused by mitochondria dysfunction,” PLoS ONE, vol. 6, no. 2, Article ID e17412, 2011.
[41]  M. Graef and J. Nunnari, “Mitochondria regulate autophagy by conserved signalling pathways,” EMBO Journal, vol. 30, no. 11, pp. 2101–2114, 2011.
[42]  D. Narendra, A. Tanaka, D. F. Suen, and R. J. Youle, “Parkin is recruited selectively to impaired mitochondria and promotes their autophagy,” Journal of Cell Biology, vol. 183, no. 5, pp. 795–803, 2008.
[43]  D. P. Narendra, S. M. Jin, A. Tanaka et al., “PINK1 is selectively stabilized on impaired mitochondria to activate Parkin,” PLoS Biology, vol. 8, no. 1, Article ID e1000298, 2010.
[44]  C. Vives-Bauza, C. Zhou, Y. Huang et al., “PINK1-dependent recruitment of Parkin to mitochondria in mitophagy,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 1, pp. 378–383, 2010.
[45]  S. M. Jin, M. Lazarou, C. Wang, L. A. Kane, D. P. Narendra, and R. J. Youle, “Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL,” Journal of Cell Biology, vol. 191, no. 5, pp. 933–942, 2010.
[46]  E. Deas, H. Plun-Favreau, S. Gandhi et al., “PINK1 cleavage at position A103 by the mitochondrial protease PARL,” Human Molecular Genetics, vol. 20, no. 5, pp. 867–879, 2011.
[47]  G. Shi, J. R. Lee, D. A. Grimes et al., “Functional alteration of PARL contributes to mitochondrial dysregulation in Parkinson's disease,” Human Molecular Genetics, vol. 20, no. 10, pp. 1966–1974, 2011.
[48]  N. Matsuda, S. Sato, K. Shiba et al., “PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy,” Journal of Cell Biology, vol. 189, no. 2, pp. 211–221, 2010.
[49]  S. Geisler, K. M. Holmstr?m, D. Skujat et al., “PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1,” Nature Cell Biology, vol. 12, no. 2, pp. 119–131, 2010.
[50]  E. Ziviani, R. N. Tao, and A. J. Whitworth, “Drosophila Parkin requires PINK1 for mitochondrial translocation and ubiquitinates Mitofusin,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 11, pp. 5018–5023, 2010.
[51]  A. C. Poole, R. E. Thomas, S. Yu, E. S. Vincow, and L. Pallanck, “The mitochondrial fusion-promoting factor mitofusin is a substrate of the PINK1/parkin pathway,” PLoS ONE, vol. 5, no. 4, Article ID e10054, 2010.
[52]  M. E. Gegg, J. M. Cooper, K. Y. Chau, M. Rojo, A. H. V. Schapira, and J. W. Taanman, “Mitofusin 1 and mitofusin 2 are ubiquitinated in a PINK1/parkin-dependent manner upon induction of mitophagy,” Human Molecular Genetics, vol. 19, no. 24, Article ID ddq419, pp. 4861–4870, 2010.
[53]  A. Tanaka, M. M. Cleland, S. Xu et al., “Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin,” Journal of Cell Biology, vol. 191, no. 7, pp. 1367–1380, 2010.
[54]  J. Y. Lee, Y. Nagano, J. P. Taylor, K. L. Lim, and T. P. Yao, “Disease-causing mutations in Parkin impair mitochondrial ubiquitination, aggregation, and HDAC6-dependent mitophagy,” Journal of Cell Biology, vol. 189, no. 4, pp. 671–679, 2010.
[55]  W. X. Ding, H. M. Ni, M. Li et al., “Nix is critical to two distinct phases of mitophagy, reactive oxygen species-mediated autophagy induction and Parkin-ubiquitin-p62-mediated mitochondrial priming,” Journal of Biological Chemistry, vol. 285, no. 36, pp. 27879–27890, 2010.
[56]  K. Okatsu, K. Saisho, M. Shimanuki et al., “P62/SQSTM1 cooperates with Parkin for perinuclear clustering of depolarized mitochondria,” Genes to Cells, vol. 15, no. 8, pp. 887–900, 2010.
[57]  D. P. Narendra, L. A. Kane, D. N. Hauser, I. M. Fearnley, and R. J. Youle, “p62/SQSTM1 is required for Parkin-induced mitochondrial clustering but not mitophagy; VDAC1 is dispensable for both,” Autophagy, vol. 6, no. 8, pp. 1090–1106, 2010.
[58]  E. Y. Chan, “MTORC1 phosphorylates the ULK1-mAtg13-FIP200 autophagy regulatory complex,” Science Signaling, vol. 2, no. 84, p. pe51, 2009.
[59]  D. F. Egan, D. B. Shackelford, M. M. Mihaylova et al., “Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy,” Science, vol. 331, pp. 456–461, 2011.
[60]  M. Ogawa, Y. Yoshikawa, T. Kobayashi et al., “A Tecpr1-dependent selective autophagy pathway targets bacterial pathogens,” Cell Host and Microbe, vol. 9, no. 5, pp. 376–389, 2011.
[61]  J. J. Lemasters, T. Qian, S. P. Elmore et al., “Confocal microscopy of the mitochondrial permeability transition in necrotic cell killing, apoptosis and autophagy,” BioFactors, vol. 8, no. 3-4, pp. 283–285, 1998.
[62]  M. Zoratti and I. Szabo, “The mitochondrial permeability transition,” Biochimica et Biophysica Acta, vol. 1241, no. 2, pp. 139–176, 1995.
[63]  M. Forte and P. Bernardi, “Genetic dissection of the permeability transition pore,” Journal of Bioenergetics and Biomembranes, vol. 37, no. 3, pp. 121–128, 2005.
[64]  S. Rodriguez-Enriquez, Y. Kai, E. Maldonado, R. T. Currin, and J. J. Lemasters, “Roles of mitophagy and the mitochondrial permeability transition in remodeling of cultured rat hepatocytes,” Autophagy, vol. 5, no. 8, pp. 1099–1106, 2009.
[65]  M. Kundu, T. Lindsten, C. Y. Yang et al., “Ulk1 plays a critical role in the autophagic clearance of mitochondria and ribosomes during reticulocyte maturation,” Blood, vol. 112, no. 4, pp. 1493–1502, 2008.
[66]  M. Schwarten, J. Mohrlüder, P. Ma et al., “Nix directly binds to GABARAP: a possible crosstalk between apoptosis and autophagy,” Autophagy, vol. 5, no. 5, pp. 690–698, 2009.
[67]  I. Novak, V. Kirkin, D. G. McEwan et al., “Nix is a selective autophagy receptor for mitochondrial clearance,” EMBO Reports, vol. 11, no. 1, pp. 45–51, 2010.
[68]  R. Baerga, Y. Zhang, P. H. Chen, S. Goldman, and S. Jin, “Targeted deletion of autophagy-related 5 (atg5) impairs adipogenesis in a cellular model and in mice,” Autophagy, vol. 5, no. 8, pp. 1118–1130, 2009.
[69]  S. Goldman, Y. Zhang, and S. Jin, “Autophagy and adipogenesis: implications in obesity and type II diabetes,” Autophagy, vol. 6, no. 1, pp. 179–181, 2010.
[70]  S. J. Goldman Scott, R. Taylor, Y. Zhang, and S. Jin, “Autophagy and the degradation of mitochondria,” Mitochondrion, vol. 10, no. 4, pp. 309–315, 2010.
[71]  S. J. Goldman, Y. Zhang, and S. Jin, “Autophagic degradation of mitochondria in white adipose tissue differentiation,” Antioxidants and Redox Signaling, vol. 14, no. 10, pp. 1971–1978, 2011.
[72]  H. Zhang, M. Bosch-Marce, L. A. Shimoda et al., “Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia,” Journal of Biological Chemistry, vol. 283, no. 16, pp. 10892–10903, 2008.
[73]  M. Band, A. Joel, A. Hernandez, and A. Avivi, “Hypoxia-induced BNIP3 expression and mitophagy: in vivo comparison of the rat and the hypoxia-tolerant mole rat, Spalax ehrenbergi,” FASEB Journal, vol. 23, no. 7, pp. 2327–2335, 2009.
[74]  J. Zhang and P. A. Ney, “Role of BNIP3 and NIX in cell death, autophagy, and mitophagy,” Cell Death and Differentiation, vol. 16, no. 7, pp. 939–946, 2009.
[75]  S. R. Yoshii, C. Kishi, N. Ishihara, and N. Mizushima, “Parkin mediates proteasome-dependent protein degradation and rupture of the outer mitochondrial membrane,” Journal of Biological Chemistry, vol. 286, no. 22, pp. 19630–19640, 2011.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133