Recent high-throughput-sequencing of the cancer genome has identified oncogenic mutations in BRaf genetic locus as one of the critical events in melanomagenesis. In normal cells, the activity of BRaf is tightly regulated. Gain-of-function mutations like those identified in melanoma frequently lead to enhanced cell-survival and unrestrained growth. The activating mutation of BRaf will also induce the cells to senesce. However, the mechanism by which the oncogenic BRaf induces the senescent barrier remains poorly defined. microRNAs have regulatory functions toward the expression of genes that are important in carcinogenesis. Here we show that expression of several microRNAs is altered when the oncogenic version of BRaf is introduced in cultured primary melanocytes and these cells undergo premature cellular senescence. These include eight microRNAs whose expression rates are significantly stimulated and three that are repressed. While most of the induced microRNAs have documented negative effects on cell cycle progression, one of the repressed microRNAs has proven oncogenic functions. Ectopic expression of some of these induced microRNAs increased the expression of senescence markers and induced growth arrest and senescence in primary melanocytes. Taken together, our results suggest that the change in microRNA expression rates may play a vital role in senescence induced by the oncogenic BRaf. 1. Introduction Unregulated oncogene expression during cancer development causes cancer cells to senesce prematurely, a gene-directed program that irrevocably induces cell cycle arrest [1–4]. First described in cell culture [5], oncogene-induced senescence (OIS) has been confirmed in vivo as a vital mechanism that constrains the malignant progression of many tumors [3]. Unregulated oncoproteins promote senescence by activating effector pathways that are cell-type and oncogene specific. Recent progress identified different regulatory circuitries of OIS, but much remains to be learned [6]. High-throughput sequencing of the cancer genomes has identified BRaf kinase as the most frequently mutated (50–70%) oncogene in melanoma [7]. About 90% of BRaf gain-of-function mutations are at position 600 with glutamic acid (E) inserted for valine (V) [7]. BRaf is a serine/threonine protein kinase that functions directly downstream of the small GTPase Ras and upstream of the MEK and ERK mitogen-activated protein kinase (MAPK) cascade. This mutation significantly increases BRaf kinase activity toward MEK, causing constitutive BRaf-MEK-ERK signaling [7, 8]. The BRaf gain-of-function
References
[1]
M. Narita and S. W. Lowe, “Senescence comes of age,” Nature Medicine, vol. 11, no. 9, pp. 920–922, 2005.
[2]
C. A. Schmitt, “Senescence, apoptosis and therapy—cutting the lifelines of cancer,” Nature Reviews Cancer, vol. 3, no. 4, pp. 286–295, 2003.
[3]
N. E. Sharpless and R. A. DePinho, “Cancer: crime and punishment,” Nature, vol. 436, no. 7051, pp. 636–637, 2005.
[4]
M. S. Soengas, “Cancer: ins and outs of tumour control,” Nature, vol. 454, no. 7204, pp. 586–587, 2008.
[5]
J. Campisi and F. D'Adda di Fagagna, “Cellular senescence: when bad things happen to good cells,” Nature Reviews Molecular Cell Biology, vol. 8, no. 9, pp. 729–740, 2007.
[6]
T. Kuilman and D. S. Peeper, “Senescence-messaging secretome: SMS-ing cellular stress,” Nature Reviews Cancer, vol. 9, no. 2, pp. 81–94, 2009.
[7]
H. Davies, G. R. Bignell, C. Cox et al., “Mutations of the BRAF gene in human cancer,” Nature, vol. 417, no. 6892, pp. 949–954, 2002.
[8]
N. Dhomen and R. Marais, “New insight into BRAF mutations in cancer,” Current Opinion in Genetics and Development, vol. 17, no. 1, pp. 31–39, 2007.
[9]
M. J. Garnett and R. Marais, “Guilty as charged: B-RAF is a human oncogene,” Cancer Cell, vol. 6, no. 4, pp. 313–319, 2004.
[10]
C. Wellbrock, S. Rana, H. Paterson, H. Pickersgill, T. Brummelkamp, and R. Marais, “Oncogenic BRAF regulates melanoma proliferation through the lineage specific factor MITF,” Plos ONE, vol. 3, no. 7, Article ID e2734, 2008.
[11]
C. Wellbrock, L. Ogilvie, D. Hedley et al., “V599EB-RAF is an oncogene in melanocytes,” Cancer Research, vol. 64, no. 7, pp. 2338–2342, 2004.
[12]
G. Bollag, P. Hirth, J. Tsai et al., “Clinical efficacy of a RAF inhibitor needs broad target blockade in BRAF-mutant melanoma,” Nature, vol. 467, no. 7315, pp. 596–599, 2010.
[13]
C. Michaloglou, L. C. W. Vredeveld, M. S. Soengas et al., “BRAFE600-associated senescence-like cell cycle arrest of human naevi,” Nature, vol. 436, no. 7051, pp. 720–724, 2005.
[14]
D. Dankort, D. P. Curley, R. A. Cartlidge et al., “BrafV600E cooperates with Pten loss to induce metastatic melanoma,” Nature Genetics, vol. 41, no. 5, pp. 544–552, 2009.
[15]
N. Dhomen, J. S. Reis-Filho, S. da Rocha Dias et al., “Oncogenic braf induces melanocyte senescence and melanoma in mice,” Cancer Cell, vol. 15, no. 4, pp. 294–303, 2009.
[16]
D. Baltimore, M. P. Boldin, R. M. O'Connell, D. S. Rao, and K. D. Taganov, “MicroRNAs: new regulators of immune cell development and function,” Nature Immunology, vol. 9, no. 8, pp. 839–845, 2008.
[17]
A. Esquela-Kerscher and F. J. Slack, “Oncomirs—MicroRNAs with a role in cancer,” Nature Reviews Cancer, vol. 6, no. 4, pp. 259–269, 2006.
[18]
L. He and G. J. Hannon, “MicroRNAs: small RNAs with a big role in gene regulation,” Nature Reviews Genetics, vol. 5, no. 7, pp. 522–531, 2004.
[19]
E. A. Miska, “MicroRNAs—keeping cells in formation,” Nature Cell Biology, vol. 10, no. 5, pp. 501–502, 2008.
[20]
M. Glud, M. Klausen, R. Gniadecki et al., “MicroRNA expression in melanocytic nevi: the usefulness of formalin-fixed, paraffin-embedded material for miRNA microarray profiling,” Journal of Investigative Dermatology, vol. 129, no. 5, pp. 1219–1224, 2009.
[21]
J. C. Acosta, A. O'Loghlen, A. Banito et al., “Chemokine signaling via the CXCR2 receptor reinforces senescence,” Cell, vol. 133, no. 6, pp. 1006–1018, 2008.
[22]
T. Kuilman, C. Michaloglou, L. C. W. Vredeveld et al., “Oncogene-induced senescence relayed by an interleukin-dependent inflammatory network,” Cell, vol. 133, no. 6, pp. 1019–1031, 2008.
[23]
N. Wajapeyee, R. W. Serra, X. Zhu, M. Mahalingam, and M. R. Green, “Oncogenic BRAF induces senescence and apoptosis through pathways mediated by the secreted Protein IGFBP7,” Cell, vol. 132, no. 3, pp. 363–374, 2008.
[24]
N. R. Christoffersen, R. Shalgi, L. B. Frankel et al., “P53-independent upregulation of miR-34a during oncogene-induced senescence represses MYC,” Cell Death and Differentiation, vol. 17, no. 2, pp. 236–245, 2010.
[25]
L. N. Bonifacio and M. B. Jarstfer, “MiRNA profile associated with replicative senescence, extended cell culture, and ectopic telomerase expression in human foreskin fibroblasts,” Plos ONE, vol. 5, no. 9, Article ID e12519, 2010.
[26]
F. Sun, H. Fu, Q. Liu et al., “Downregulation of CCND1 and CDK6 by miR-34a induces cell cycle arrest,” FEBS Letters, vol. 582, no. 10, pp. 1564–1568, 2008.
[27]
G. T. Bommer, I. Gerin, Y. Feng et al., “p53-mediated activation of miRNA34 candidate tumor-suppressor genes,” Current Biology, vol. 17, no. 15, pp. 1298–1307, 2007.
[28]
L. He, X. He, L. P. Lim et al., “A microRNA component of the p53 tumour suppressor network,” Nature, vol. 447, no. 7148, pp. 1130–1134, 2007.
[29]
X. Chen, X. Guo, H. Zhang et al., “Role of miR-143 targeting KRAS in colorectal tumorigenesis,” Oncogene, vol. 28, no. 10, pp. 1385–1392, 2009.
[30]
H. Zhang, X. Cai, Y. Wang, H. Tang, D. Tong, and F. Ji, “microRNA-143, down-regulated in osteosarcoma, promotes apoptosis and suppresses tumorigenicity by targeting Bcl-2,” Oncology Reports, vol. 24, no. 5, pp. 1363–1369, 2010.
[31]
S. Ugras, E. Brill, A. Jacobsen et al., “Small RNA sequencing and functional characterization reveals microrna-143 tumor suppressor activity in liposarcoma,” Cancer Research, vol. 71, no. 17, pp. 5659–5669, 2011.
[32]
J. J. Zhao, J. Lin, T. Lwin et al., “MicroRNA expression profile and identification of miR-29 as a prognostic marker and pathogenetic factor by targeting CDK6 in mantle cell lymphoma,” Blood, vol. 115, no. 13, pp. 2630–2639, 2010.
[33]
L. Ma, J. Teruya-Feldstein, and R. A. Weinberg, “Tumour invasion and metastasis initiated by microRNA-10b in breast cancer,” Nature, vol. 449, no. 7163, pp. 682–688, 2007.
[34]
O. Rissland, S. J. Hong, and D. P. Bartel, “MicroRNA destabilization enables dynamic regulation of the miR-16 family in response to cell-cycle changes,” Molecular Cell, vol. 43, no. 6, pp. 993–1004, 2011.
[35]
P. S. Linsley, J. Schelter, J. Burchard et al., “Transcripts targeted by the microRNA-16 family cooperatively regulate cell cycle progression,” Molecular and Cellular Biology, vol. 27, no. 6, pp. 2240–2252, 2007.
[36]
Q. Liu, H. Fu, F. Sun et al., “miR-16 family induces cell cycle arrest by regulating multiple cell cycle genes,” Nucleic Acids Research, vol. 36, no. 16, pp. 5391–5404, 2008.
[37]
V. C. Gray-Schopfer, S. C. Cheong, H. Chong et al., “Cellular senescence in naevi and immortalisation in melanoma: a role for p16?” British Journal of Cancer, vol. 95, no. 4, pp. 496–505, 2006.