全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Synergistic Modulation of Cellular Contractility by Mixed Extracellular Matrices

DOI: 10.1155/2012/471591

Full-Text   Cite this paper   Add to My Lib

Abstract:

The extracellular matrix (ECM) is known to provide various physicochemical cues in directing cell behavior including composition, topography, and dimensionality. Physical remodeling of the ECM has been documented in a variety of cancers. In breast cancer, the increased deposition of matrix proteins, their crosslinking, and alignment create a stiffer microenvironment that activates cell contractility and promotes cancer invasion. In this paper, we sought to study the collective influence of ECM composition and density on the contractile mechanics of human MDA-MB-231 cells making use of the recently established trypsin deadhesion assay. Using collagen and fibronectin-coated surfaces of varying density, we show that cell contractility is tuned in a density-dependent manner, with faster deadhesion on fibronectin-coated surfaces compared to collagen-coated surfaces under identical coating densities. The deadhesion responses are significantly delayed when cells are treated with the myosin inhibitor blebbistatin. By combining collagen and fibronectin at two different densities, we show that mixed ligand surfaces synergistically modulate cell contractility. Finally, we show that on fibroblast-derived 3D matrices that closely mimic in vivo matrices, cells are strongly polarized and exhibit faster deadhesion compared to the mixed ligand surfaces. Together, our results demonstrate that ECM composition, density, and 3D organization collectively regulate cell contractility. 1. Introduction Of the several hallmarks of tumor formation, the extracellular matrix (ECM) plays a central role in regulating evasion of apoptosis, uncontrolled proliferation, angiogenesis, and metastasis [1, 2]. The acquisition of these hallmarks is made possible through a series of continuous alterations in ECM composition and organization during tumor progression that is manifested in altered ECM mechanical properties. For example, tumors are significantly stiffer than normal tissue, and malignant transformation may be promoted by ECM stiffening. Such alterations in ECM properties lead to altered tensional homeostasis, that is, the force balance between individual cells and the ECM [3]. The ECM is composed of a heterogeneous network of collagen, fibronectin, laminin, glycoproteins, and proteoglycans, with its composition varying in a tissue-specific manner. ECM composition and organization are frequently altered in the context of cancer. For example, increased deposition of collagen I is associated with mammographic density and an increase in the development of breast cancer [4]. Further,

References

[1]  D. Hanahan and R. A. Weinberg, “Hallmarks of cancer: the next generation,” Cell, vol. 144, no. 5, pp. 646–674, 2011.
[2]  D. Hanahan and R. A. Weinberg, “The hallmarks of cancer,” Cell, vol. 100, no. 1, pp. 57–70, 2000.
[3]  H. Yu, J. K. Mouw, and V. M. Weaver, “Forcing form and function: biomechanical regulation of tumor evolution,” Trends in Cell Biology, vol. 21, no. 1, pp. 47–56, 2011.
[4]  G. Ursin, L. Hovanessian-Larsen, Y. R. Parisky, M. C. Pike, and A. H. Wu, “Greatly increased occurrence of breast cancers in areas of mammographically dense tissue,” Breast Cancer Research, vol. 7, no. 5, pp. R605–R608, 2005.
[5]  K. R. Levental, H. Yu, L. Kass et al., “Matrix crosslinking forces tumor progression by enhancing integrin signaling,” Cell, vol. 139, no. 5, pp. 891–906, 2009.
[6]  P. P. Provenzano, D. R. Inman, K. W. Eliceiri et al., “Collagen density promotes mammary tumor initiation and progression,” BMC Medicine, vol. 6, article 11, 2008.
[7]  N. Yang, R. Mosher, S. Seo, D. Beebe, and A. Friedl, “Syndecan-1 in breast cancer stroma fibroblasts regulates extracellular matrix fiber organization and carcinoma cell motility,” American Journal of Pathology, vol. 178, no. 1, pp. 325–335, 2011.
[8]  O. Nadiarnykh, R. B. LaComb, M. A. Brewer, and P. J. Campagnola, “Alterations of the extracellular matrix in ovarian cancer studied by Second Harmonic Generation imaging microscopy,” BMC Cancer, vol. 10, article 94, 2010.
[9]  R. N. Kaplan, R. D. Riba, S. Zacharoulis et al., “VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche,” Nature, vol. 438, no. 7069, pp. 820–827, 2005.
[10]  T. Velling, J. Risteli, K. Wennerberg, D. F. Mosher, and S. Johansson, “Polymerization of type I and III collagens is dependent on fibronectin and enhanced by integrins α11β1 and α2β1,” Journal of Biological Chemistry, vol. 277, no. 40, pp. 37377–37381, 2002.
[11]  C. Gaudet, W. A. Marganski, S. Kim et al., “Influence of type I collagen surface density on fibroblast spreading, motility, and contractility,” Biophysical Journal, vol. 85, no. 5, pp. 3329–3335, 2003.
[12]  A. Engler, L. Bacakova, C. Newman, A. Hategan, M. Griffin, and D. Discher, “Substrate compliance versus ligand density in cell on gel responses,” Biophysical Journal, vol. 86, no. 1, pp. 617–628, 2004.
[13]  S. R. Peyton and A. J. Putnam, “Extracellular matrix rigidity governs smooth muscle cell motility in a biphasic fashion,” Journal of Cellular Physiology, vol. 204, no. 1, pp. 198–209, 2005.
[14]  C. A. Reinhart-King, M. Dembo, and D. A. Hammer, “The dynamics and mechanics of endothelial cell spreading,” Biophysical Journal, vol. 89, no. 1, pp. 676–689, 2005.
[15]  C. M. Kraning-Rush, J. P. Califano, and C. A. Reinhart-King, “Cellular traction stresses increase with increasing metastatic potential,” PLoS ONE, vol. 7, no. 2, Article ID e32572, 2012.
[16]  T. M. Koch, S. Münster, N. Bonakdar, J. P. Butler, and B. Fabry, “3D Traction forces in cancer cell invasion,” PLoS ONE, vol. 7, no. 3, Article ID e33476, 2012.
[17]  E. L. Baker, J. Lu, D. Yu, R. T. Bonnecaze, and M. H. Zaman, “Cancer cell stiffness: integrated roles of three-dimensional matrix stiffness and transforming potential,” Biophysical Journal, vol. 99, no. 7, pp. 2048–2057, 2010.
[18]  M. Lekka, P. Laidler, D. Gil, J. Lekki, Z. Stachura, and A. Z. Hrynkiewicz, “Elasticity of normal and cancerous human bladder cells studied by scanning force microscopy,” European Biophysics Journal, vol. 28, no. 4, pp. 312–316, 1999.
[19]  M. Beil, A. Micoulet, G. Von Wichert et al., “Sphingosylphosphorylcholine regulates keratin network architecture and visco-elastic properties of human cancer cells,” Nature Cell Biology, vol. 5, no. 9, pp. 803–811, 2003.
[20]  M. J. Rosenbluth, W. A. Lam, and D. A. Fletcher, “Force microscopy of nonadherent cells: a comparison of leukemia cell deformability,” Biophysical Journal, vol. 90, no. 8, pp. 2994–3003, 2006.
[21]  C. Rotsch and M. Radmacher, “Drug-induced changes of cytoskeletal structure and mechanics in fibroblasts: an atomic force microscopy study,” Biophysical Journal, vol. 78, no. 1, pp. 520–535, 2000.
[22]  S. Sen, M. Dong, and S. Kumar, “Isoform-specific contributions of α-actinin to glioma cell mechanobiology,” PLoS ONE, vol. 4, no. 12, Article ID e8427, 2009.
[23]  S. Sen, S. Subramanian, and D. E. Discher, “Indentation and adhesive probing of a cell membrane with AFM: theoretical model and experiments,” Biophysical Journal, vol. 89, no. 5, pp. 3203–3213, 2005.
[24]  K. C. Neuman and A. Nagy, “Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy,” Nature Methods, vol. 5, no. 6, pp. 491–505, 2008.
[25]  B. Fabry, G. N. Maksym, S. A. Shore et al., “Selected contribution: time course and heterogeneity of contractile responses in cultured human airway smooth muscle cells,” Journal of Applied Physiology, vol. 91, no. 2, pp. 986–994, 2001.
[26]  S. Hu, L. Eberhard, J. Chen et al., “Mechanical anisotropy of adherent cells probed by a three-dimensional magnetic twisting device,” American Journal of Physiology, vol. 287, no. 5, pp. C1184–C1191, 2004.
[27]  N. Wang, I. M. Toli-N?rrelykke, J. Chen et al., “Cell prestress. I. Stiffness and prestress are closely associated in adherent contractile cells,” American Journal of Physiology, vol. 282, no. 3, pp. C606–C616, 2002.
[28]  R. M. Hochmuth, “Micropipette aspiration of living cells,” Journal of Biomechanics, vol. 33, no. 1, pp. 15–22, 2000.
[29]  W. R. Trickey, T. P. Vail, and F. Guilak, “The role of the cytoskeleton in the viscoelastic properties of human articular chondrocytes,” Journal of Orthopaedic Research, vol. 22, no. 1, pp. 131–139, 2004.
[30]  S. Sen and S. Kumar, “Cell-matrix de-adhesion dynamics reflect contractile mechanics,” Cellular and Molecular Bioengineering, vol. 2, no. 2, pp. 218–230, 2009.
[31]  S. Sen, W. P. Ng, and S. Kumar, “Contractility dominates adhesive ligand density in regulating cellular de-adhesion and retraction kinetics,” Annals of Biomedical Engineering, vol. 39, no. 4, pp. 1163–1173, 2011.
[32]  R. C. Duhamel, E. Meezan, and K. Brendel, “The addition of SDS to the Bradford dye-binding protein assay, a modification with increased sensitivity to collagen,” Journal of Biochemical and Biophysical Methods, vol. 5, no. 2, pp. 67–74, 1981.
[33]  D. A. Beacham, M. D. Amatangelo, and E. Cukierman, “Preparation of extracellular matrices produced by cultured and primary fibroblasts,” Current Protocols in cell Biology, vol. 10, p. 10.9, 2007.
[34]  E. Cukierman, R. Pankov, D. R. Stevens, and K. M. Yamada, “Taking cell-matrix adhesions to the third dimension,” Science, vol. 294, no. 5547, pp. 1708–1712, 2001.
[35]  B. P. Schneider, E. P. Winer, W. D. Foulkes et al., “Triple-negative breast cancer: risk factors to potential targets,” Clinical Cancer Research, vol. 14, no. 24, pp. 8010–8018, 2008.
[36]  D. A. Kirschmann, E. A. Seftor, D. R. C. Nieva, E. A. Mariano, and M. J. C. Hendrix, “Differentially expressed genes associated with the metastatic phenotype in breast cancer,” Breast Cancer Research and Treatment, vol. 55, no. 2, pp. 127–136, 1999.
[37]  A. D. Doyle, F. W. Wang, K. Matsumoto, and K. M. Yamada, “One-dimensional topography underlies three-dimensional fi brillar cell migration,” Journal of Cell Biology, vol. 184, no. 4, pp. 481–490, 2009.
[38]  D. A. Beacham and E. Cukierman, “Stromagenesis: the changing face of fibroblastic microenvironments during tumor progression,” Seminars in Cancer Biology, vol. 15, no. 5, pp. 329–341, 2005.
[39]  M. Dembo, T. Oliver, A. Ishihara, and K. Jacobson, “Imaging the traction stresses exerted by locomoting cells with the elastic substratum method,” Biophysical Journal, vol. 70, no. 4, pp. 2008–2022, 1996.
[40]  M. Dembo and Y. L. Wang, “Stresses at the cell-to-substrate interface during locomotion of fibroblasts,” Biophysical Journal, vol. 76, no. 4, pp. 2307–2316, 1999.
[41]  F. Chowdhury, S. Na, D. Li et al., “Material properties of the cell dictate stress-induced spreading and differentiation in embryonic stem cells,” Nature Materials, vol. 9, no. 1, pp. 82–88, 2010.
[42]  L. B. Hazeltine, C. S. Simmons, M. R. Salick, et al., “Effects of substrate mechanics on contractility of cardiomyocytes generated from human pluripotent stem cells,” International Journal of Cell Biology, vol. 2012, Article ID 508294, 13 pages, 2012.
[43]  C. T. Mierke, B. Frey, M. Fellner, M. Herrmann, and B. Fabry, “Integrin α5β1 facilitates cancer cell invasion through enhanced contractile forces,” Journal of Cell Science, vol. 124, no. 3, pp. 369–383, 2011.
[44]  S. Munevar, Y. L. Wang, and M. Dembo, “Traction force microscopy of migrating normal and H-ras transformed 3T3 fibroblasts,” Biophysical Journal, vol. 80, no. 4, pp. 1744–1757, 2001.
[45]  M. J. Paszek, N. Zahir, K. R. Johnson et al., “Tensional homeostasis and the malignant phenotype,” Cancer Cell, vol. 8, no. 3, pp. 241–254, 2005.
[46]  B. Geiger, J. P. Spatz, and A. D. Bershadsky, “Environmental sensing through focal adhesions,” Nature Reviews Molecular Cell Biology, vol. 10, no. 1, pp. 21–33, 2009.
[47]  J. T. Parsons, A. R. Horwitz, and M. A. Schwartz, “Cell adhesion: integrating cytoskeletal dynamics and cellular tension,” Nature Reviews Molecular Cell Biology, vol. 11, no. 9, pp. 633–643, 2010.
[48]  J. P. Califano and C. A. Reinhart-King, “Substrate stiffness and cell area predict cellular traction stresses in single cells and cells in contact,” Cellular and Molecular Bioengineering, vol. 3, no. 1, pp. 68–75, 2010.
[49]  M. L. Gardel, I. C. Schneider, Y. Aratyn-Schaus, and C. M. Waterman, “Mechanical integration of actin and adhesion dynamics in cell migration,” Annual Review of Cell and Developmental Biology, vol. 26, pp. 315–333, 2010.
[50]  A. J. Ridley, M. A. Schwartz, K. Burridge et al., “Cell migration: integrating signals from front to back,” Science, vol. 302, no. 5651, pp. 1704–1709, 2003.
[51]  M. Baldassarre, A. Pompeo, G. Beznoussenko et al., “Dynamin participates in focal extracellular matrix degradation by invasive cells,” Molecular Biology of the Cell, vol. 14, no. 3, pp. 1074–1084, 2003.
[52]  C. M. Lo, H. B. Wang, M. Dembo, and Y. L. Wang, “Cell movement is guided by the rigidity of the substrate,” Biophysical Journal, vol. 79, no. 1, pp. 144–152, 2000.
[53]  R. J. Pelham Jr. and Y. L. Wang, “Cell locomotion and focal adhesions are regulated by substrate flexibility,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 25, pp. 13661–13665, 1997.
[54]  C. D. Reyes, T. A. Petrie, and A. J. García, “Mixed extracellular matrix ligands synergistically modulate integrin adhesion and signaling,” Journal of Cellular Physiology, vol. 217, no. 2, pp. 450–458, 2008.
[55]  E. Cukierman, R. Pankov, and K. M. Yamada, “Cell interactions with three-dimensional matrices,” Current Opinion in Cell Biology, vol. 14, no. 5, pp. 633–639, 2002.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133