全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Saponification of Jatropha curcas Seed Oil: Optimization by D-Optimal Design

DOI: 10.1155/2012/574780

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this study, the effects of ethanolic KOH concentration, reaction temperature, and reaction time to free fatty acid (FFA) percentage were investigated. D-optimal design was employed to study significance of these factors and optimum condition for the technique predicted and evaluated. The optimum conditions for maximum FFA% were achieved when 1.75?M ethanolic KOH concentration was used as the catalyst, reaction temperature of and reaction time of 2.0?h. This study showed that ethanolic KOH concentration was significant variable for saponification of J. curcas seed oil. In an 18-point experimental design, percentage of FFA for saponification of J. curcas seed oil can be raised from 1.89% to 102.2%. 1. Introduction Saponification of oils is the applied term to the operation in which ethanolic KOH reacts with oil to form glycerol and fatty acids. Production of fatty acid and glycerol from oils is important especially in oleochemical industries. Glycerol and fatty acids are widely used as raw materials in food, cosmetics, pharmaceutical industries [1, 2], soap production, synthetic detergents, greases, cosmetics, and several other products [3]. The soap production starting from triglycerides and alkalis is accomplished for more than 2000 years by [4]. These reactions produce the fatty acids that are the starting point for most oleochemicals production. As the primary feedstocks are oils and fats, glycerol is produced as a valuable byproduct. Reaction routes and conditions with efficient glycerol recovery are required to maximize the economics of large-scale production [5]. Lipid saponification is usually carried out in the laboratory by refluxing oils and fats with different catalysts [6]. The reaction can be catalyzed by acid, base, or lipase, but it also occurs as an uncatalyzed reaction between fats and water dissolved in the fat phase at suitable temperatures and pressures [7]. Researchers have used several methods to saponify oils such as enzymatic saponification using lipases from Aspergillus niger, Rhizopus javanicus, and Penicillium solitum [8], C. rugosa [1], and subcritical water [3]. Historically, soaps were produced by alkaline saponification of oils and fats, and this process is still referred to as saponification. Soaps are now produced by neutralization of fatty acids produced by fat splitting, but alkaline saponification may still be preferred for heat-sensitive fatty acids [9]. Nowadays, researchers have used potassium hydroxide-catalyzed hydrolysis of esters which is sometimes known as saponification because of its relationship with soap

References

[1]  N. A. Serri, A. H. Kamarudin, and S. N. Abdul Rahaman, “Preliminary studies for production of fatty acids from hydrolysis of cooking palm oil using C. rugosa lipase,” Journal of Physical Science, vol. 19, pp. 79–88, 2008.
[2]  H. Hermansyah, M. Kubo, N. Shibasaki-Kitakawa, and T. Yonemoto, “Mathematical model for stepwise hydrolysis of triolein using Candida rugosa lipase in biphasic oil-water system,” Biochemical Engineering Journal, vol. 31, no. 2, pp. 125–132, 2006.
[3]  J. S. S. Pinto and F. M. Lan?as, “Hydrolysis of corn oil using subcritical water,” Journal of the Brazilian Chemical Society, vol. 17, no. 1, pp. 85–89, 2006.
[4]  O. J. Ackelsberg, “Fat splitting,” Journal of the American Oil Chemists Society, vol. 35, pp. 635–640, 1958.
[5]  C. Scrimgeour, “Chemistry of fatty acid,” in Bailey fs Industrial Oil and Fat Products, F. Shahidi, Ed., vol. 5, pp. 1–43, John Wiley & Sons, Hoboken, NJ, USA, 6th edition, 2005.
[6]  F. D. Gunstone, The Chemistry of Oils and Fats: Sources, Composition, Properties, and Uses, Blackwell, 2004.
[7]  A. Rukmini and S. Raharjo, “Pattern of peroxide value changes in virgin coconut oil (VCO) due to photo-oxidation sensitized by chlorophyll,” Journal of the American Oil Chemists' Society, vol. 87, no. 12, pp. 1407–1412, 2010.
[8]  P. O. Carvalho, P. R. B. Campos, M. D'Addio Noffs, P. B. L. Fregolente, and L. V. Fregolente, “Enzymatic hydrolysis of salmon oil by native lipases: optimization of process parameters,” Journal of the Brazilian Chemical Society, vol. 20, no. 1, pp. 117–124, 2009.
[9]  W. W. Christie, Lipid Analysis, The Oily Press, Bridgwater, UK, 3rd edition, 2002.
[10]  H. B. Hashim and J. Salimon, “Kajian pengoptimuman tindak balas hidrolisis minyak kacang soya,” The Malaysian Journal of Analytical Sciences, vol. 12, pp. 205–209, 2008.
[11]  AOCS, Official Methods of Analysis, Association of Official Analytical Chemist, Arlington, Tex, USA, 16th edition, 1997.
[12]  M. Wu, H. Ding, S. Wang, and S. Xu, “Optimizing conditions for the purification of linoleic acid from sunflower oil by urea complex fractionation,” Journal of the American Oil Chemists' Society, vol. 85, no. 7, pp. 677–684, 2008.
[13]  I. M. Noor, M. Hasan, and K. B. Ramachandran, “Effect of operating variables on the hydrolysis rate of palm oil by lipase,” Process Biochemistry, vol. 39, no. 1, pp. 13–20, 2003.
[14]  S. Fadilo?lu and Z. S?ylemez, “Olive oil hydrolysis by celite-immobilized Candida rugosa lipase,” Journal of Agricultural and Food Chemistry, vol. 46, no. 9, pp. 3411–3414, 1998.
[15]  D. Rooney and L. R. Weatherley, “The effect of reaction conditions upon lipase catalysed hydrolysis of high oleate sunflower oil in a stirred liquid-liquid reactor,” Process Biochemistry, vol. 36, no. 10, pp. 947–953, 2001.
[16]  R. L. Mason, R. F. Gunst, and J. L. Hess, Statistical Design and Analysis of Experiments with Applications to Engineering and Science, John Wiley & Sons, New York, NY, USA, 1989.
[17]  J. Salimon, B. M. Abdullah, and N. Salih, “Hydrolysis optimization and characterization study of preparing fatty acids from Jatropha curcas seed oil,” Chemistry Central Journal, vol. 5, articel 67, 2011.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133