Dehydration of sugars to 5-hydroxymethylfurfural (HMF) has recently been under intensive study by a multitude of research groups. On the other hand, when lignocellulosic biomass is applied as the starting material, very few studies can be found in the open literature. The direct synthesis of HMF, in line with the idea of “one-pot” synthesis strategy from lignocellulose, is demanding since the overall process should encompass dissolution, hydrolysis, and dehydration steps in a single processing unit. Ionic liquid-assisted methods to produce hydroxymethyl-furfural directly from lignocellulosic biomass are reported here together with a short overview of the most important biofuels. In reality, HMF is not suitable to be used as a single-component fuel as such, and, consequently, methods to produce HMF derivatives suitable as liquid fuels are reported. 1. Introduction The demand for renewable energy is expected to significantly increase from current levels, partially due to the depletion of fossil fuels and, also, as a result of political decisions aiming at reduced dependency on fossil resources. Among other actors, European Union (EU) has announced an ambitious goal of reaching 20% renewable energy share by 2020 [1]. In fact, the focus on the use of renewable energy is at low carbon-footprint fuels, resulting in reduced emissions of greenhouse gases to countermeasure the ever-increasing global use of fossil fuels affecting our biosphere [2]. Different sources of renewable energy such as utilization of wind and solar power, hydroelectric installations, and geothermal energy are used today. The use of biomass resources, either for direct combustion (including thermal processes such as gasification and pyrolysis) or as a source of raw material for various biological processes (fermentations; enzymatic transformation; anaerobic bacterial biogas production), as well as chemical and catalytic processes exist that aim at liquid or gaseous products. Transport sector stands for approximately one-third of the world’s primary energy-consumption currently amounting to about 500 EJ [3]. Since, for example, electric cars are not ideal for long distance transportation due to the low energy capacity of even the best batteries of today, there is a strong need to develop new liquid transportation fuel mixes. Upon formulation of renewable fuels from biomass, a general central step is to reduce the oxygen content embedded in the molecular structure of any biomass. Various liquid biofuels were already used in the beginning of the era of internal combustion engines (like
References
[1]
F. Birol, World Energy Outlook 2010, International Energy Agency, Paris, France, 2010.
[2]
G. Centi, P. Lanzafame, and S. Perathoner, “Analysis of the alternative routes in the catalytic transformation of lignocellulosic materials,” Catalysis Today, vol. 167, pp. 14–30, 2011.
[3]
IEA, World Energy Outlook 2009, International Energy Agency, Paris, France, 2009.
[4]
J. Goettemoeller and A. Goettemoeller, “The history of vegetable oil based diesel fuels,” in The Biodiesel Handbook, G. Knothe, Ed., chapter 2, 2007.
[5]
J. Goettemoeller and A. Goettemoeller, Sustainable Ethanol: Biofuels, Biorefineries, Cellulosic Biomass, Flex-Fuel Vehicles, and Sustainable Farming for Energy Independence, Prairie Oak Publishing, Maryville, Mo, USA, 2007.
[6]
http://www.preem.se.
[7]
http://www.sunpine.se.
[8]
http://www.nesteoil.fi.
[9]
P. M?ki-Arvela, T. Salmi, B. Holmbom, S. Willf?r, and D. Y. Murzin, “Synthesis of sugars by hydrolysis of hemicelluloses- A review,” Chemical Reviews, vol. 111, no. 9, pp. 5638–5666, 2011.
[10]
P. M?ki-Arvela, I. Anugwom, P. Virtanen, R. Sj?holm, and J. P. Mikkola, “Dissolution of lignocellulosic materials and its constituents using ionic liquids-A review,” Industrial Crops and Products, vol. 32, no. 3, pp. 175–201, 2010.
[11]
Z. Zhang and Z. K. Zhao, “Microwave-assisted conversion of lignocellulosic biomass into furans in ionic liquid,” Bioresource Technology, vol. 101, no. 3, pp. 1111–1114, 2010.
[12]
P. Wang, H. Yu, S. Zhan, and S. Wang, “Catalytic hydrolysis of lignocellulosic biomass into 5-hydroxymethylfurfural in ionic liquid,” Bioresource Technology, vol. 102, no. 5, pp. 4179–4183, 2011.
[13]
J. B. Binder and R. T. Raines, “Simple chemical transformation of lignocellulosic biomass into furans for fuels and chemicals,” Journal of the American Chemical Society, vol. 131, no. 5, pp. 1979–1985, 2009.
[14]
M. E. Zakrzewska, E. Bogel-?ukasik, and R. Bogel-?ukasik, “Ionic liquid-mediated formation of 5-hydroxymethylfurfural-A promising biomass-derived building block,” Chemical Reviews, vol. 111, no. 2, pp. 397–417, 2011.
[15]
J. B. Binder and R. T. Raines, “Simple chemical transformation of lignocellulosic biomass into furans for fuels and chemicals,” WO2009/155297 A1.
[16]
A. Bruggink, R. Schoevaart, and T. Kieboom, “Concepts of nature in organic synthesis: cascade catalysis and multistep conversions in concert,” Organic Process Research and Development, vol. 7, no. 5, pp. 622–640, 2003.
[17]
C. Moreau, A. Finiels, and L. Vanoye, “Dehydration of fructose and sucrose into 5-hydroxymethylfurfural in the presence of 1-H-3-methyl imidazolium chloride acting both as solvent and catalyst,” Journal of Molecular Catalysis A, vol. 253, no. 1-2, pp. 165–169, 2006.
[18]
G. Gruter, L. E. Manzer, A. S. V. De Sousa Dias, F. Dautzenberg, and J. Purmova, “Hydroxymethylfurfural ethers and esters prepared in ionic liquids,” WO2009/030512.
[19]
T. St?hlberg, S. Rodriguez-Rodriguez, P. Fristrup, and A. Riisager, “Metal-free dehydration of glucose to 5-(Hydroxymethyl)furfural in ionic liquids with boric acid as a promoter,” Chemistry, vol. 17, no. 5, pp. 1456–1464, 2011.
[20]
J. P. Mikkola, P. Virtanen, and R. Sj?holm, “Aliquat 336—A versatile and affordable cation source for an entirely new family of hydrophobic ionic liquids,” Green Chemistry, vol. 8, no. 3, pp. 250–255, 2006.
[21]
P. Virtanen, J. P. Mikkola, E. Toukoniitty et al., “Supported ionic liquid catalysts-From batch to continuous operation in preparation of fine chemicals,” Catalysis Today, vol. 147, pp. S144–S148, 2009.
[22]
P. Virtanen, H. Karhu, G. Toth, K. Kordas, and J. P. Mikkola, “Towards one-pot synthesis of menthols from citral: modifying Supported Ionic Liquid Catalysts (SILCAs) with Lewis and Br?nsted acids,” Journal of Catalysis, vol. 263, no. 2, pp. 209–219, 2009.
[23]
P. Hara, J. P. Mikkola, D. Y. Murzin, and L. T. Kanerva, “Supported ionic liquids in Burkholderia cepacia lipase-catalyzed asymmetric acylation,” Journal of Molecular Catalysis B, vol. 67, no. 1-2, pp. 129–134, 2010.
[24]
R. Pezoa, V. Cortinez, S. Hyv?rinen et al., “Use of ionic liquids in the pretreatment of forest and agricultural residues for the production of bioethanol,” Cellulose Chemistry and Technology, vol. 44, no. 4–6, pp. 165–172, 2010.
[25]
B. F. M. Kuster, “5-hydroxymethylfurfural (HMF). A review focusing on its manufacture,” Starch/St?rke, vol. 42, pp. 314–321, 1990.
[26]
C. Li, Z. K. Zhao, A. Wang, M. Zheng, and T. Zhang, “Production of 5-hydroxymethylfurfural in ionic liquids under high fructose concentration conditions,” Carbohydrate Research, vol. 345, no. 13, pp. 1846–1850, 2010.
[27]
K. B. Sidhpuria, A. L. Daniel-Da-Silva, T. Trindade, and J. A. P. Coutinho, “Supported ionic liquid silica nanoparticles (SILnPs) as an efficient and recyclable heterogeneous catalyst for the dehydration of fructose to 5-hydroxymethylfurfural,” Green Chemistry, vol. 13, no. 2, pp. 340–349, 2011.
[28]
E. Salminen, P. Virtanen, P. M?ki-Arvela, N. Kumar, and J.-P. Mikkola, “Synthesis of 5-hydroxymethylfurfural (HMF) over acid/alkaline modified supported ionic liquid catalysts,” in Proceedings of the International Congress on Renewable Energy (ICORE '11), S. K. Samdarshi, S. Mahapatra, and S. Paul, Eds., Assam, India, 2011.
[29]
J. A. Dumesic, Y. Roman-Leshkov, and J. N. Chheda, “Catalytic process for producing furan derivatives in a biphasic reactor,” US Patent no. 7572925 B2, 2009.
[30]
M. Chidambaram and A. T. Bell, “A two-step approach for the catalytic conversion of glucose to 2,5-dimethylfuran in ionic liquids,” Green Chemistry, vol. 12, no. 7, pp. 1253–1262, 2010.
[31]
J. Lewkowski, “Synthesis, chemistry and applications of 5-hydroxymethyl-furfural and its derivatives,” Arkivoc, vol. 2001, no. 1, pp. 17–54, 2001.
[32]
Y. Román-Leshkov, C. J. Barrett, Z. Y. Liu, and J. A. Dumesic, “Production of dimethylfuran for liquid fuels from biomass-derived carbohydrates,” Nature, vol. 447, no. 7147, pp. 982–985, 2007.
[33]
L. G. Anderson, “Ethanol fuel use in Brazil: air quality impacts,” Energy and Environmental Science, vol. 2, no. 10, pp. 1015–1037, 2009.
[34]
R. L. Tanner, “Atmospheric chemistry of aldehydes: enhanced peroxyacetyl nitrate formation from ethanol-fueled vehicular emissions,” Environmental Science and Technology, vol. 22, no. 9, pp. 1026–1034, 1988.
[35]
http://www.bioraffinaderi.se/.
[36]
E. Sj?str?m, Wood Chemistry, Fundamentals and Applications, Academic press, London, UK, 2nd edition, 1993.
[37]
T. Tsuchida, S. Sakuma, T. Takeguchi, and W. Ueda, “Direct synthesis of n-butanol from ethanol over nonstoichiometric hydroxyapatite,” Industrial and Engineering Chemistry Research, vol. 45, no. 25, pp. 8634–8642, 2006.
[38]
T. Tsuchida, J. Kubo, T. Yoshioka, S. Sakuma, T. Takeguchi, and W. Ueda, “Reaction of ethanol over hydroxyapatite affected by Ca/P ratio of catalyst,” Journal of Catalysis, vol. 259, no. 2, pp. 183–189, 2008.
[39]
K. W. Yang, X. Z. Jiang, and W. C. Zhang, “One-step synthesis of n-butanol from ethanol condensation over alumina-supported metal catalysts,” Chinese Chemical Letters, vol. 15, no. 12, pp. 1497–1500, 2004.
[40]
I. C. Marcu, D. Tichit, F. Fajula, and N. Tanchoux, “Catalytic valorization of bioethanol over Cu-Mg-Al mixed oxide catalysts,” Catalysis Today, vol. 147, no. 3-4, pp. 231–238, 2009.
[41]
A. S. Ndou, N. Plint, and N. J. Coville, “Dimerisation of ethanol to butanol over solid-base catalysts,” Applied Catalysis A, vol. 251, no. 2, pp. 337–345, 2003.
[42]
C. Yang and Z. Y. Meng, “Bimolecular condensation of ethanol to 1-butanol catalyzed by alkali cation zeolites,” Journal of Catalysis, vol. 142, no. 1, pp. 37–44, 1993.
[43]
L. A. Ashkinazi, “Biobutanol: biofuel of second generation,” Economics of Chemical Industry, vol. 81, no. 12, pp. 2232–2236, 2008.
[44]
M. Kumar and K. Gayen, “Developments in biobutanol production: new insights,” Applied Energy, vol. 88, no. 6, pp. 1999–2012, 2011.
[45]
H. P. Blaschek, “Bioproduction of butanol from biomass: from genes to bioreactors,” Current Opinion in Biotechnology, vol. 18, no. 3, pp. 220–227, 2007.
[46]
P. H. Pfromm, V. Amanor-Boadu, R. Nelson, P. Vadlani, and R. Madl, “Bio-butanol vs. bio-ethanol: a technical and economic assessment for corn and switchgrass fermented by yeast or Clostridium acetobutylicum,” Biomass and Bioenergy, vol. 34, no. 4, pp. 515–524, 2010.
[47]
J. Swana, Y. Yang, M. Behnam, and R. Thompson, “An analysis of net energy production and feedstock availability for biobutanol and bioethanol,” Bioresource Technology, vol. 102, no. 2, pp. 2112–2117, 2011.
[48]
H. Fukuda, A. Kondo, and H. Noda, “Biodiesel fuel production by transesterification of oils,” Journal of Bioscience and Bioengineering, vol. 92, no. 5, pp. 405–416, 2001.
[49]
J. R. Gomes, “Vegetable oil hydroconversion process,” US Patent no. 2006/0186020 A1, 2006.
[50]
P. Priecel, D. Kubi?ka, L. ?apek, Z. Bastl, and P. Ry?ánek, “The role of Ni species in the deoxygenation of rapeseed oil over NiMo-alumina catalysts,” Applied Catalysis A, vol. 397, no. 1-2, pp. 127–137, 2011.
[51]
D. Yu. Murzin, I. Kubickova, M. Sn?re, P. M?ki-Arvela, and J. Myllyoja, “Method for the manufacture of hydrocarbons,” WO 2006075057, US Patent no. 7, 491,858, 2009.
[52]
O. O. James, S. Maity, L. A. Usman et al., “Towards the conversion of carbohydrate biomass feedstocks to biofuels via hydroxylmethylfurfural,” Energy and Environmental Science, vol. 3, no. 12, pp. 1833–1852, 2010.
[53]
G. M. M. Gruter and F. Dautzenberg, “Method for the synthesis of 5-alkoxymethyl furfural ethers and their use,” WO2007/104514 A2.
[54]
A. J. Sanborn, “Processes for the preparation and purification of hydroxymethyl furaldehyde and derivatives,” WO2006/063220.
[55]
J. L. Anderson, J. Ding, T. Welton, and D. W. Armstrong, “Characterizing ionic liquids on the basis of multiple solvation interactions,” Journal of the American Chemical Society, vol. 124, no. 47, pp. 14247–14254, 2002.
[56]
H. Zhao, J. E. Holladay, H. Brown, and Z. C. Zhang, “Metal chlorides in ionic liquid solvents convert sugars to 5-hydroxymethylfurfural,” Science, vol. 316, no. 5831, pp. 1597–1600, 2007.
[57]
F. Ilgen, D. Ott, D. Kralisch, C. Reil, A. Palmberger, and B. K?nig, “Conversion of carbohydrates into 5-hydroxymethylfurfural in highly concentrated low melting mixtures,” Green Chemistry, vol. 11, no. 12, pp. 1948–1954, 2009.
[58]
Q. Bao, K. Qiao, D. Tomida, and C. Yokoyama, “Preparation of 5-hydroymethylfurfural by dehydration of fructose in the presence of acidic ionic liquid,” Catalysis Communications, vol. 9, no. 6, pp. 1383–1388, 2008.
[59]
J. P. Mikkola, P. Virtanen, H. Karhu, T. Salmi, and D. Y. Murzin, “Supported ionic liquids catalysts for fine chemicals: citral hydrogenation,” Green Chemistry, vol. 8, no. 2, pp. 197–205, 2006.
[60]
C. P. Mehnert, E. J. Mozeleski, and R. A. Cook, “Supported ionic liquid catalysis investigated for hydrogenation reactions,” Chemical Communications, vol. 8, no. 24, pp. 3010–3011, 2002.
[61]
U. Kernchen, B. Etzold, W. Korth, and A. Jess, “Solid catalyst ionic liquid layer (SCILL)—A new concept to improve selectivity illustrated by hydrogenation of cyclooctadiene,” Chemical Engineering and Technology, vol. 30, no. 8, pp. 985–994, 2007.
[62]
Y. Gu, C. Ogawa, J. Kobayashi, Y. Mori, and S. Kobayashi, “A heterogeneous silica-supported scandium/ionic liquid catalyst system for organic reactions in water,” Angewandte Chemie, vol. 45, no. 43, pp. 7217–7220, 2006.
[63]
A. Riisager, R. Fehrmann, S. Flicker, R. Van Hal, M. Haumann, and P. Wasserscheid, “Very stable and highly regioselective supported ionic-liquid-phase (SILP) catalysis: continuous-flow fixed-bed hydroformylation of propene,” Angewandte Chemie, vol. 44, no. 5, pp. 815–819, 2005.
[64]
M. H. Valkenberg, C. DeCastro, and W. F. H?lderich, “Immobilisation of ionic liquids on solid supports,” Green Chemistry, vol. 4, no. 2, pp. 88–93, 2002.
[65]
F. Shi, Q. Zhang, D. Li, and Y. Deng, “Silica-gel-confined ionic liquids: a new attempt for the development of supported nanoliquid catalysis,” Chemistry A, vol. 11, no. 18, pp. 5279–5288, 2005.
[66]
O. Bobleter, “Hydrothermal degradation and fractionation of saccharides and polysaccharides,” in Polysaccharides, Structural Diversity and Functional Versatility, S. Dumitriu, Ed., Marcel Dekker, New York, NY, USA, 2nd edition, 2005.
[67]
R. C. Kuhad and A. Singh, “Lignocellulose biotechnology. Current and future prospects,” Critical Reviews in Biotechnology, vol. 13, no. 2, pp. 151–172, 1993.
[68]
J. H. Sloneker, “Agricultural residues, including feedlot wastes,” Biotechnology and Bioengineering Symposium, no. 6, pp. 235–250, 1976.
[69]
A. Pinkert, K. N. Marsh, and S. Pang, “Reflections on the solubility of cellulose,” Industrial and Engineering Chemistry Research, vol. 49, no. 22, pp. 11121–11130, 2010.
[70]
A. W. T. King, J. Asikkala, I. Mutikainen, P. J?rvi, and I. Kilpel?inen, “Distillable acid-base conjugate ionic liquids for cellulose dissolution and processing,” Angewandte Chemie, vol. 50, no. 28, pp. 6301–6305, 2011.
[71]
K. J. Zeitsch, The Chemistry and Technology of Furfural and Its Many by-Products, Elsevier Press, Amsterdam, Netherlands, 2000.