The cultivation of strawberries generally requires substantial use of pesticides, and abamectin is the active principle of one of those most commonly employed. Conventional water treatment does not remove pesticides efficiently, so there is a need to investigate alternative procedures. The use of advanced oxidation processes (AOPs) can achieve good results in removal of toxic organic compounds present in aqueous solutions. The photo-Fenton process, one example of an AOP, was employed to study the degradation of abamectin. Results showed that when natural water samples contaminated with abamectin were treated using the photo-Fenton process, 70% of the initial amount of the compound was removed within 60 minutes of UV irradiation, and 60% mineralization was observed after 180 minutes of reaction. 1. Introduction Biocides are one of the most important classes of compounds introduced into surface waters by human activities [1]. They are widely used in agriculture and can contaminate rivers and other water bodies due to transport from cultivated areas [2–5]. Although the pesticide industry has developed new compounds that are more effective, even at lower concentrations, and that present lower environmental impacts [6], the misuse of such pesticides can pose considerable toxicity risks to operators, consumers, and the wider environment [7]. The cultivation of strawberries uses large amounts of pesticides. One of the most commonly employed is Vertimec 18 EC, which contains 1.8% (w/v) of abamectin, the active principle. Abamectin belongs to the avermectin group and has the molecular formula C48H72O14 (avermectin B1a) + C47H70O14 (avermectin B1b). It is used primarily as a biocide. Abamectin is a toxic chemical and can be fatal if inhaled, ingested, or absorbed by the skin. It causes skin and eye irritation, and at high doses can cause damage to the central nervous system (CAS no., 71751-41-2). The substance is also highly toxic to fish and aquatic invertebrates. The maximum acceptable daily intake (ADI) is 0.01?mg?kg?1 body weight, and the maximum residue limit is 0.02?mg?kg?1 of the commercial product [8]. Effluents containing biocides cannot usually be treated efficiently using biological techniques, since the effluents are toxic to the microorganisms involved so that the biodegradation efficiency is reduced [9]. An alternative treatment that has been investigated is based on the use of advanced oxidation processes (AOPs), which are very efficient for the removal of potentially toxic organic compounds from water systems. In AOPs, hydroxyl radicals are formed
References
[1]
Z. Huang, Y. Li, B. Chen, and S. Yao, “Simultaneous determination of 102 pesticide residues in Chinese teas by gas chromatography-mass spectrometry,” Journal of Chromatography B, vol. 853, no. 1-2, pp. 154–162, 2007.
[2]
I. K. Konstantinou, D. G. Hela, and T. A. Albanis, “The status of pesticide pollution in surface waters (rivers and lakes) of Greece. Part I. Review on occurrence and levels,” Environmental Pollution, vol. 141, no. 3, pp. 555–570, 2006.
[3]
A. J. Dos Santos Neto and M. E. P. B. De Siqueira, “Analysis of organophosphorus pesticides in water using SPE C18 disks and gas chromatography: evaluation of Furnas dam contamination,” Química Nova, vol. 28, no. 5, pp. 747–750, 2005.
[4]
M. J. Cerejeira, P. Viana, S. Batista et al., “Pesticides in Portuguese surface and ground waters,” Water Research, vol. 37, no. 5, pp. 1055–1063, 2003.
[5]
E. Maloschik, A. Ernst, G. Hegedus, B. Darvas, and A. Székács, “Monitoring water-polluting pesticides in Hungary,” Microchemical Journal, vol. 85, no. 1, pp. 88–97, 2007.
[6]
F. P. Carvalho, “Agriculture, pesticides, food security and food safety,” Environmental Science and Policy, vol. 9, no. 7-8, pp. 685–692, 2006.
[7]
N. D. Uri, “A note on the development and use of pesticides,” Science of the Total Environment, vol. 204, no. 1, pp. 57–74, 1997.
[8]
Joint FAO/WHO Food Standards Program, Codex Committee on Pesticide Residues, CX/PR 97/9 pp. 159, 1997.
[9]
M. B. Kralj, P. Treb?e, and M. Franko, “Applications of bioanalytical techniques in evaluating advanced oxidation processes in pesticide degradation,” Trends in Analytical Chemistry, vol. 26, no. 11, pp. 1020–1031, 2007.
[10]
R. Andreozzi, V. Caprio, A. Insola, and R. Marotta, “Advanced oxidation processes (AOP) for water purification and recovery,” Catalysis Today, vol. 53, no. 1, pp. 51–59, 1999.
[11]
V. Claret Dos Santos and M. M. Kondo, “TiO2 immobilizan onto concrete: chloroform and phenol photodegradation,” Química Nova, vol. 29, no. 2, pp. 251–255, 2006.
[12]
M. Klavarioti, D. Mantzavinos, and D. Kassinos, “Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes,” Environment International, vol. 35, no. 2, pp. 402–417, 2009.
[13]
D. Hermosilla, M. Cortijo, and C. P. Huang, “Optimizing the treatment of landfill leachate by conventional Fenton and photo-Fenton processes,” Science of the Total Environment, vol. 407, no. 11, pp. 3473–3481, 2009.
[14]
J. J. Pignatello, E. Oliveros, and A. MacKay, “Advanced oxidation processes for organic contaminant destruction based on the fenton reaction and related chemistry,” Critical Reviews in Environmental Science and Technology, vol. 36, no. 1, pp. 1–84, 2006.
[15]
R. F. Pupo Nogueira, A. G. Trovó, M. R. A. Da Silva, R. D. Villa, and M. C. De Oliveira, “Fundaments and environmental applications of Fenton and photo-Fenton processes,” Química Nova, vol. 30, no. 2, pp. 400–408, 2007.
[16]
J. J. Pignatello, “Dark and photoassisted Fe3+-catalyzed degradation of chlorophenoxy herbicides by hydrogen peroxide,” Environmental Science and Technology, vol. 26, no. 5, pp. 944–951, 1992.
[17]
R. F. Pupo Nogueira and J. R. Guimar?es, “Photodegradation of dichloroacetic acid and 2,4-dichlorophenol by ferrioxalate/H2O2 system,” Water Research, vol. 34, no. 3, pp. 895–901, 2000.
[18]
J. A. Herrera-Melián, E. Tello Rendón, J. M. Do?a Rodríguez et al., “Incidence of pretreatment by potassium permanganate on hazardous laboratory wastes photodegradability,” Water Research, vol. 34, no. 16, pp. 3967–3976, 2000.
[19]
E. Balanosky, F. Herrera, A. Lopez, and J. Kiwi, “Oxidative degradation of textile waste water. Modeling reactor performance,” Water Research, vol. 34, no. 2, pp. 582–596, 2000.
[20]
T. Maezono, M. Tokumura, M. Sekine, and Y. Kawase, “Hydroxyl radical concentration profile in photo-Fenton oxidation process: generation and consumption of hydroxyl radicals during the discoloration of azo-dye Orange II,” Chemosphere, vol. 82, pp. 1422–1430, 2010.
[21]
M. Pérez-Moya, M. Graells, G. Castells et al., “Characterization of the degradation performance of the sulfamethazine antibiotic by photo-Fenton process,” Water Research, vol. 44, no. 8, pp. 2533–2540, 2010.
[22]
O. Rozas, D. Contreras, M. A. Mondaca, M. Pérez-Moya, and H. D. Mansilla, “Experimental design of Fenton and photo-Fenton reactions for the treatment of ampicillin solutions,” Journal of Hazardous Materials, vol. 177, no. 1–3, pp. 1025–1030, 2010.
[23]
V. J. P. Vilar, E. M. R. Rocha, F. S. Mota, A. Fonseca, I. Saraiva, and R. A. R. Boaventura, “Treatment of a sanitary landfill leachate using combined solar photo-Fenton and biological immobilized biomass reactor at a pilot scale,” Water Research, vol. 45, no. 8, pp. 2647–2658, 2011.
[24]
N. Klamerth, L. Rizzo, S. Malato, M. I. Maldonado, A. Agüera, and A. R. Fernández-Alba, “Degradation of fifteen emerging contaminants at μg? initial concentrations by mild solar photo-Fenton in MWTP effluents,” Water Research, vol. 44, no. 2, pp. 545–554, 2010.
[25]
M. R. A. Silva, A. G. Trovó, and R. F. P. Nogueira, “Degradation of the herbicide tebuthiuron using solar photo-Fenton process and ferric citrate complex at circumneutral pH,” Journal of Photochemistry and Photobiology A, vol. 191, no. 2-3, pp. 187–192, 2007.
[26]
M. R. A. Silva, W. Vilegas, M. V. B. Zanoni, and R. F. Pupo Nogueira, “Photo-Fenton degradation of the herbicide tebuthiuron under solar irradiation: iron complexation and initial intermediates,” Water Research, vol. 44, no. 12, pp. 3745–3753, 2010.
[27]
M. M. Kondo, K. U. C. G. Leite, M. R. A. Silva, and A. D. P. Reis, “Fenton and photo-fenton processes coupled to uasb to treat coffee pulping wastewater,” Separation Science and Technology, vol. 45, no. 11, pp. 1506–1511, 2010.
[28]
M. Ribani, C. B. Grespan Bottoli, C. H. Collins, I. C. S. Fontes Jardim, and L. F. Costa Melo, “Validation for chromatographic and electrophoretic methods,” Química Nova, vol. 27, no. 5, pp. 771–780, 2004.
[29]
J. Hernández-Borges, L. M. Ravelo-Pérez, E. M. Hernández-Suárez, A. Carnero, and M. A. Rodríguez-Delgado, “Analysis of abamectin residues in avocados by high-performance liquid chromatography with fluorescence detection,” Journal of Chromatography A, vol. 1165, no. 1-2, pp. 52–57, 2007.
[30]
R Development Core Team, R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, 2009.
[31]
R. F. P. Nogueira, M. C. Oliveira, and W. C. Paterlini, “Simple and fast spectrophotometric determination of H2O2 in photo-Fenton reactions using metavanadate,” Talanta, vol. 66, no. 1, pp. 86–91, 2005.
[32]
H. Diserens and M. Henzelin, “Determination of abamectin residues in fruits and vegetables by high-performance liquid chromatography,” Journal of Chromatography A, vol. 833, no. 1, pp. 13–18, 1999.
[33]
A. I. Valenzuela, D. S. Popa, M. J. Redondo, and J. Ma?es, “Comparison of various liquid chromatographic methods for the analysis of avermectin residues in citrus fruits,” Journal of Chromatography A, vol. 918, no. 1, pp. 59–65, 2001.
[34]
M. Danaher, L. C. Howells, S. R. H. Crooks, V. Cerkvenik-Flajs, and M. O'Keeffe, “Review of methodology for the determination of macrocyclic lactone residues in biological matrices,” Journal of Chromatography B, vol. 844, no. 2, pp. 175–203, 2006.
[35]
M. D. Hernando, J. M. Suárez-Barcena, M. J. M. Bueno, J. F. Garcia-Reyes, and A. R. Fernández-Alba, “Fast separation liquid chromatography-tandem mass spectrometry for the confirmation and quantitative analysis of avermectin residues in food,” Journal of Chromatography A, vol. 1155, no. 1, pp. 62–73, 2007.
[36]
M. Mushtaq, A. C. Chukwudebe, C. Wrzesinski, L. R. S. Allen, D. Luffer-Atlas, and B. H. Arison, “Photodegradation of emamectin benzoate in aqueous solution,” Journal of Agricultural and Food Chemistry, vol. 46, no. 3, pp. 1181–1191, 1998.
[37]
A. Kamel, S. Al-Dosary, S. Ibrahim, and M. Asif Ahmed, “Degradation of the acaricides abamectin, flufenoxuron and amitraz on Saudi Arabian dates,” Food Chemistry, vol. 100, no. 4, pp. 1590–1593, 2007.
[38]
R. F. P. Nogueira, M. R. A. Silva, and A. G. Trovó, “Influence of the iron source on the solar photo-Fenton degradation of different classes of organic compounds,” Solar Energy, vol. 79, no. 4, pp. 384–392, 2005.
[39]
J. S. Park, K. H. Kim, G. J. Kwon, et al., “Development of small and efficient ozone generation using corona discharge,” Korus-Physics, vol. 1, pp. 282–284, 2001.
[40]
Y. Sun and J. J. Pignatello, “Photochemical reactions involved in the total mineralization of 2,4-D by Fe3+/H2O2/UV,” Environmental Science and Technology, vol. 27, no. 2, pp. 304–310, 1993.
[41]
E. Neyens and J. Baeyens, “A review of classic Fenton's peroxidation as an advanced oxidation technique,” Journal of Hazardous Materials, vol. 98, no. 1–3, pp. 33–50, 2003.
[42]
R. Venkatadri and R. W. Peters, “Chemical oxidation technologies: ultraviolet light/hydrogen peroxide, Fenton's reagent, and titanium dioxide-assisted photocatalysis,” Hazardous Waste and Hazardous Materials, vol. 10, no. 2, pp. 107–149, 1993.
[43]
R. Bauer, G. Waldner, H. Fallmann et al., “The photo-fenton reaction and the TiO2/UV process for waste water treatment—novel developments,” Catalysis Today, vol. 53, no. 1, pp. 131–144, 1999.
[44]
W. C. Paterlini and R. F. P. Nogueira, “Multivariate analysis of photo-Fenton degradation of the herbicides tebuthiuron, diuron and 2,4-D,” Chemosphere, vol. 58, no. 8, pp. 1107–1116, 2005.
[45]
R. G. Zepp, B. C. Faust, and J. Holgné, “Hydroxyl radical formation in aqueous reactions (pH 3-8) of iron(II) with hydrogen peroxide: the photo-fenton reaction,” Environmental Science and Technology, vol. 26, no. 2, pp. 313–319, 1992.
[46]
H. Fallmann, T. Krutzler, R. Bauer, S. Malato, and J. Blanco, “Applicability of the Photo-Fenton method for treating water containing pesticides,” Catalysis Today, vol. 54, no. 2-3, pp. 309–319, 1999.