全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

A Comparison of Nannochloropsis salina Growth Performance in Two Outdoor Pond Designs: Conventional Raceways versus the ARID Pond with Superior Temperature Management

DOI: 10.1155/2012/920608

Full-Text   Cite this paper   Add to My Lib

Abstract:

The present study examines how climatic conditions and pond design affect the growth performance of microalgae. From January to April of 2011, outdoor batch cultures of Nannochloropsis salina were grown in three replicate 780?L conventional raceways, as well as in an experimental 7500?L algae raceway integrated design (ARID) pond. The ARID culture system utilizes a series of 8–20?cm deep basins and a 1.5?m deep canal to enhance light exposure and mitigate temperature variations and extremes. The ARID culture reached the stationary phase 27 days earlier than the conventional raceways, which can be attributed to its superior temperature management and shallower basins. On a night when the air temperature dropped to ?9°C, the water temperature was 18°C higher in the ARID pond than in the conventional raceways. Lipid and fatty acid content ranged from 16 to 25% and from 5 to15%, respectively, as a percentage of AFDW. Palmitic, palmitoleic, and eicosapentaenoic acids comprised the majority of fatty acids. While the ARID culture system achieved nearly double the volumetric productivity relative to the conventional raceways (0.023 versus 0.013?g?L?1day?1), areal biomass productivities were of similar magnitude in both pond systems (3.47 versus 3.34?g?m?2day?1), suggesting that the ARID pond design has to be further optimized, most likely by increasing the culture depth or operating at higher cell densities while maintaining adequate mixing. 1. Introduction Raceway ponds have been commonly used as microalgae production systems since the 1970s [1]. Their simplicity and low costs have led to their adoption in commercial microalgae production systems [2]. The conventional design utilizes a motor driven paddle wheel to propel the culture around a circular track. Many variations on this basic pond design have been explored, and there have been efforts to combine conventional raceways with photobioreactors in a two-stage cultivation process [3–5]. Given that microalgae-derived biofuels have yet to be proven economically feasible on an industrial scale, all aspects of the production chain require further optimization. Cultivation system optimization could lead to more favorable economics by raising annual biomass yields and reducing capital and operating costs. In an outdoor production environment, both conventional raceways and photobioreactors are subject to inclement weather that can create suboptimal growth conditions. Any attempt to control or mitigate temperature extreme can decrease the net energy output of the production system and increase capital costs.

References

[1]  W. Oswald, “Current status of algae from wastes,” Chemical Engineering Symposium Series, vol. 65, pp. 87–92, 1969.
[2]  D. Chaumont, “Biotechnology of algal biomass production: a review of systems for outdoor mass culture,” Journal of Applied Phycology, vol. 5, no. 6, pp. 593–604, 1993.
[3]  E. Becker, Microalgae. Biotechnology and Microbiology, Cambridge University Press, Cambridge, UK, 1994.
[4]  C. H. Su, L. J. Chien, J. Gomes et al., “Factors affecting lipid accumulation by Nannochloropsis oculata in a two-stage cultivation process,” Journal of Applied Phycology, vol. 23, no. 5, pp. 903–908, 2011.
[5]  B. Pushparaj, E. Pelosi, M. R. Tredici, E. Pinzani, and R. Materassi, “An integrated culture system for outdoor production of microalgae and cyanobacteria,” Journal of Applied Phycology, vol. 9, no. 2, pp. 113–119, 1997.
[6]  R. Ryan, P. Waller, M. Kacira, and P. Li, “Aquaculture raceway integrated design,” US Patent 0023360 A1, 2011.
[7]  P. Waller, R. Ryan, M. Kacira, and P. Li, “The algae Raceway integrated design for optimal temperature management,” Journal of Biomass and Bioenergy. In press.
[8]  I. Setlik, S. Veladimir, and I. Malek, “Dual purpose open circulation units for large scale culture of algae in temperature zones. I. Basic design considerations and scheme for pilot plant,” Algological Studies, vol. 1, pp. 111–164, 1970.
[9]  R. R. Guillard and J. H. Ryther, “Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt, and Detonula confervacea (cleve),” Canadian Journal of Microbiology, vol. 8, pp. 229–239, 1962.
[10]  http://www.instantocean.com/.
[11]  M. H. Huesemann, T. S. Hausmann, R. Bartha et al., “Biomass productivities in wild type and pigment mutant of Cyclotella sp. (Diatom),” Applied Biochemistry and Biotechnology, vol. 157, no. 3, pp. 507–526, 2009.
[12]  Product no. 2106103, http://www.hach.com/.
[13]  Product no. 2106103, http://www.hach.com/.
[14]  E. G. Bligh and W. J. Dyer, “A rapid method of total lipid extraction and purification.,” Canadian Journal of Biochemistry and Physiology, vol. 37, no. 8, pp. 911–917, 1959.
[15]  W. Christie and X. Han, Lipid Analysis—Isolation, Separation, Identification and Lipidomic Analysis, The Oily Press, Bridgwater, UK, 2010.
[16]  February 2011 climate report for Tucson, National Weather Service Forecast Office, Tucson AZ, 2011, http://www.wrh.noaa.gov/twc/climate/monthly/feb11.php.
[17]  S. Boussiba, A. Vonshak, Z. Cohen, Y. Avissar, and A. Richmond, “Lipid and biomass production by the halotolerant microalga Nannochloropsis salina,” Biomass, vol. 12, no. 1, pp. 37–47, 1987.
[18]  J. van Wagenen, S. Hobbs, P. Hooke, B. Crowe, and M. Huesemann, “Effect of light intensity and temperature on growth rate and fatty acid composistion in Nannochloropsis salina,” Energies, no. 3, pp. 731–740.
[19]  M. Borowitza, “Culturing microalgae in outdoor ponds,” in Algal Culturing Techniques, R. Andersen, Ed., pp. 205–218, Elsevier Academic Press, Burlington, Mass, USA, 2005.
[20]  Q. Hu, M. Sommerfeld, E. Jarvis et al., “Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances,” Plant Journal, vol. 54, no. 4, pp. 621–639, 2008.
[21]  P. Leonardi, C. Popovich, and M. Damiani, Feedstocks for Second-Generation Biodiesel: Microalgae's Biology and Oil Composition, Economic Effects of Biofuel Production, 2011, http://www.intechopen.com/articles/show/title/feedstocks-for-second-generation-biodiesel-microalgae-s-biology-and-oil-composition.
[22]  H. Hu and K. Gao, “Response of growth and fatty acid compositions of Nannochloropsis sp. to environmental factors under elevated CO2 concentration,” Biotechnology Letters, vol. 28, no. 13, pp. 987–992, 2006.
[23]  L. Rodolfi, G. C. Zittelli, N. Bassi et al., “Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor,” Biotechnology and Bioengineering, vol. 102, no. 1, pp. 100–112, 2009.
[24]  S. M. Renaud, D. L. Parry, L. V. Thinh, C. Kuo, A. Padovan, and N. Sammy, “Effect of light intensity on the proximate biochemical and fatty acid composition of Isochrysis sp. and Nannochloropsis oculata for use in tropical aquaculture,” Journal of Applied Phycology, vol. 3, no. 1, pp. 43–53, 1991.
[25]  A. Sukenik and Y. Carmeli, “Regulation of Fatty Acid Composition by Irradiance Level in the Eustigmatophyte Nannochloropsis sp.,” Journal of Phycology, vol. 25, pp. 686–692, 1989.
[26]  D. Pal, I. Khozin-Goldberg, Z. Cohen, and S. Boussiba, “The effect of light, salinity, and nitrogen availability on lipid production by Nannochloropsis sp.,” Applied Microbiology and Biotechnology, vol. 90, no. 4, pp. 1429–1441, 2011.
[27]  A. Converti, A. A. Casazza, E. Y. Ortiz, P. Perego, and M. del Borghi, “Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production,” Chemical Engineering and Processing: Process Intensification, vol. 48, no. 6, pp. 1146–1151, 2009.
[28]  A. Sukenik, O. Zmora, and Y. Carmeli, “Biochemical quality of marine unicellular algae with special emphasis on lipid composition. II. Nannochloropsis sp.,” Aquaculture, vol. 117, no. 3-4, pp. 313–326, 1993.
[29]  J. Volkman, M. Brown, G. Dunstan, and S. Jeffrey, “Biochemical composition of marine microalgae from the class Eustigmatophyceae,” Journal of Phycology, vol. 29, pp. 69–78, 1993.
[30]  I. Khozin-Goldberg and S. Boussiba, “Concerns over the reporting of inconsistent data on fatty acid composition for microalgae of the genus Nannochloropsis (Eustigmatophyceae),” Journal of Applied Phycology, vol. 23, no. 5, pp. 933–934, 2011.
[31]  P. A. Hodgson, R. J. Henderson, J. R. Sargent, and J. W. Leftley, “Patterns of variation in the lipid class and fatty acid composition of Nannochloropsis oculata (Eustigmatophyceae) during batch culture,” Journal of Applied Phycology, vol. 3, no. 2, pp. 169–181, 1991.
[32]  A. Sukenik, Y. Yamaguchi, and A. Livne, “Alterations in lipid molecular species of the marine eustigmatophyte Nannochloropsis sp.,” Journal of Phycology, vol. 29, no. 5, pp. 620–626, 1993.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133