全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Utilization of Agrowaste Polymers in PVC/NBR Alloys: Tensile, Thermal, and Morphological Properties

DOI: 10.1155/2012/121496

Full-Text   Cite this paper   Add to My Lib

Abstract:

Poly(vinyl chloride)/nitrile butadiene rubber (PVC/NBR) alloys were melt-mixed using a Brabender Plasticorder at and 50?rpm rotor speed. Alloys obtained by melt mixing from PVC and NBR were formulated with wood-flour- (WF-) based olive residue, a natural byproduct from olive oil extraction industry. WF was progressively increased from 0 to 30?phr. The effects of WF loadings on the tensile properties of the fabricated samples were inspected. The torque rheometry, which is an indirect indication of the melt strength, is reported. The pattern of water uptake for the composites was checked as a function WF loading. The fracture mode and the quality of bonding of the alloy with and without filler are studied using electron scanning microscope (SEM). 1. Introduction Polymer alloys continue to represent a field of intensive research. One of the most common blends in the modern sense is PVC with NBR [1, 2]. Due to the miscible nature of PVC/NBR blend as evidenced from single glass transition the soft blend of PVC/NBR can be categorized as a thermoplastic elastomer (TPE) and more specifically as a melt processable rubber (MPR) [3–5]. Fillers are incorporated mainly to improve service properties or to reduce material cost depending on the source of filler, type of filler, method of preparation, and treatment. Very large quantities of the natural lignocelluloses polymers are produced annually as agrowastes. A very small amount is used as antioxidants or fillers in polymers. The rest is used almost as fuel to generate energy. The field of wood-based agrowastes polymer composites is extensively reviewed in the open literature [5–8]. Recently, we report the effect of virgin olive pomace on the flexural and thermal performance of toughened PVC composites [9]. We found that the virgin olive pomace enhanced the flexural properties to a certain extent, which was due to the hydrogen bond formation, while the thermal stability was improved due to the phenolic hydroxyl group within the lignocellulosic powder. In this work, the effect of wood-flour-based olive residue on the tensile properties, water absorption and morphology of PVC/NBR alloys are reported in the current investigation. 2. Experimental 2.1. Materials and Formulation Acrylonitrile nitrile rubber with 34% acrylo content was supplied by Bayer AG, Germany. Suspension PVC grade in powder form with a -value of 67 was supplied by SABIC of Saudi Arabia and stabilized with lead salt. Wood-flour-based agrowastes with particle size equal or less than 45?μm were used as received. The WF-based olive mill residue has been

References

[1]  L. A. Utracki, D. J. Walsh, and R. A. Weiss, “Polymer alloys, blends, and Ionomers: an overview,” in Multiphase Polymers: Blends and Ionomers, L. A. Utracki and R. A. Weiss, Eds., vol. 395 of ACS symposium Series, pp. 1–35, American Chemical Society, Washington, DC, USA, 1989.
[2]  K. T. Varughese, P. P. De, S. K. Sanyal, and S. K. De, “Miscible blends from plasticized poly(vinyl chloride) and epoxidized natural rubber,” Journal of Applied Polymer Science, vol. 37, no. 9, pp. 2537–2548, 1989.
[3]  Y. Song, Q. Zheng, and C. Liu, “Green biocomposites from wheat gluten and hydroxyethyl cellulose: processing and properties,” Industrial Crops and Products, vol. 28, no. 1, pp. 56–62, 2008.
[4]  G. Siracusa, A. D. la Rosa, V. Siracusa, and M. Trovato, “Eco-compatible use of olive husk as filler in thermoplastic composites,” Journal of Polymers and the Environment, vol. 9, no. 4, pp. 157–161, 2001.
[5]  A. Abu Bakar, A. Hassan, and A. F. M. Yusof, “Effect of oil palm empty fruit bunch and acrylic impact modifier on mechanical properties and prcessability of unplasticized poly (vinyl chloride) composites,” Polymer-Plastics Technology and Engineering, vol. 44, pp. 1125–1137, 2005.
[6]  H. D. Rozman, G. S. Tay, R. N. Kumar, A. Abusamah, H. Ismail, and Z. A. Mohd, “The effect of oil extraction of the oil palm empty fruit bunch on the mechanical properties of polypropylene-oil palm empty fruit bunch-glass fibre hybrid composites,” Polymer-Plastics Technology and Engineering, vol. 40, no. 2, pp. 103–115, 2001.
[7]  Z. A. M. Ishak, A. Aminullah, H. Ismail, and H. D. Rozman, “Effect of silane-based coupling agents and acrylic acid based compatibilizers on mechanical properties of oil palm empty fruit bunch filled high-density polyethylene composites,” Journal of Applied Polymer Science, vol. 68, no. 13, pp. 2189–2203, 1998.
[8]  L. Avérous and F. le Digabel, “Properties of biocomposites based on lignocellulosic fillers,” Carbohydrate Polymers, vol. 66, no. 4, pp. 480–493, 2006.
[9]  A. Mousa, G. Heinrich, U. Gohs, R. H?ssler, and U. Wagenknecht, “Application of renewable agro-waste-based olive pomace on the mechanical and thermal performance of toughened PVC,” Polymer-Plastics Technology and Engineering, vol. 48, no. 10, pp. 1030–1040, 2009.
[10]  A. Mousa, G. Heinrich, and U. Wagenknecht, “Thermoplastic composites based on renewable natural resources: unplasticized PVC/olive husk,” International Journal of Polymeric Materials, vol. 59, no. 11, pp. 843–853, 2010.
[11]  T. G. Vladkova, P. D. Dineff, and D. N. Gospodinova, “Wood flour: a new filler for the rubber processing industry. II. Cure characteristics and mechanical properties of NBR compounds filled with corona-treated wood flour,” Journal of Applied Polymer Science, vol. 91, no. 2, pp. 883–889, 2004.
[12]  L. Fama, A. M?nica, B. Q. Bittante, P. J. A. Sobral, S. Goyanes, and L. N. Gerschenson, “Garlic powder and wheat bran as fillers: their effect on the physicochemical properties of edible biocomposites,” Materials Science and Engineering C, vol. 30, no. 6, pp. 853–859, 2010.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133