全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Influence of Temperature, Agitation, Sludge Concentration and Solids Retention Time on Primary Sludge Fermentation

DOI: 10.1155/2012/861467

Full-Text   Cite this paper   Add to My Lib

Abstract:

The aim of this research was to determine the influence of temperature, agitation, sludge concentration, and solids retention time (SRT) to obtain readily biodegradable organic matter on primary sludge (PS) fermentation, which would be used as substrate in a biological nutrient removal (BNR) process. Stirring and heating the sludge as well as increasing SRT improved the PS fermentation, producing a large amount of soluble chemical oxygen demand (SCOD). The influence of each operational parameter on PS hydrolysis was observed clearly. A great performance on SCOD production was obtained when the PS was stirred and heated for 3 days. However, PS concentration did not affect the fermentation. Sludge agitation is a simple process with minimal energy consumption. Warming the sludge is very interesting in those plants with anaerobic digestion, where heat energy is obtained from biogas. Therefore, PS fermentation can be improved with a minimum investment and leveraging existing resources in a wastewater treatment plant (WWTP). Fermenter volume can also be reduced if sludge is being heated and stirred during fermentation. 1. Introduction Optimization of wastewater treatment plants (WWTPs) equipped with BNR processes has been taking place in Spain, in recent years, to satisfy the requirements of phosphorus and nitrogen set by the Council Directive of 21 May 1991 concerning urban waste water treatment (91/271/EEC). These requirements are listed in Table 1. Table 1: Requirements for discharges from urban waste water treatment plants to sensitive areas which are subject to eutrophication. Council directive of 21 May 1991 concerning urban waste water treatment (91/271/EEC). The fraction of organic matter that is readily biodegradable, namely, the organic matter that could be metabolized directly by heterotrophic bacteria in anoxic and anaerobic zones is a key parameter on BNR processes. However, the influent of the vast majority of the WWTP contains low readily biodegradable organic matter, particularly in urban plants. Therefore, in many cases, it is impossible to achieve a total nitrogen lower than 10?mg/L in the effluent of WWTP with over 100,000 inhabitants. A supply of readily biodegradable organic matter is required. The supply of readily biodegradable organic matter can be external to the processes that occur in the WWTP. Many commercially available organic compounds, such as methanol or acetic acid, can serve effectively as a carbon source for a BNR process. However, the use of such external carbon sources results in an increase of the operational costs and

References

[1]  I. S. Turoviskiy and P. K. Mathai, Wastewater Sludge Processing, chapter 2, John Wiley & Sons, Hoboken, NJ, USA, 2006.
[2]  C. Arnaiz, J. C. Gutierrez, and J. Lebrato, “Biomass stabilization in the anaerobic digestion of wastewater sludges,” Bioresource Technology, vol. 97, no. 10, pp. 1179–1184, 2006.
[3]  A. S. Ucisik and M. Henze, “Biological hydrolysis and acidification of sludge under anaerobic conditions: the effect of sludge type and origin on the production and composition of volatile fatty acids,” Water Research, vol. 42, no. 14, pp. 3729–3738, 2008.
[4]  Q. Yuan, M. Baranowski, and J. A. Oleszkiewicz, “Effect of sludge type on the fermentation products,” Chemosphere, vol. 80, no. 4, pp. 445–449, 2010.
[5]  Y. Miron, G. Zeeman, J. B. Van Lier, and G. Lettinga, “The role of sludge retention time in the hydrolysis and acidification of lipids, carbohydrates and proteins during digestion of primary sludge in cstr systems,” Water Research, vol. 34, no. 5, pp. 1705–1713, 2000.
[6]  Y. H. Ahn and R. E. Speece, “Elutriated acid fermentation of municipal primary sludge,” Water Research, vol. 40, no. 11, pp. 2210–2220, 2006.
[7]  E. V. Munch E., J. Keller, P. Lant, and R. Newell, “Mathematical modelling of prefermenters—i. model development and verification,” Water Research, vol. 33, no. 12, pp. 2757–2768, 1999.
[8]  H. Wu, J. Gao, D. Yang, Q. Zhou, and W. Liu, “Alkaline fermentation of primary sludge for short-chain fatty acids accumulation and mechanism,” Chemical Engineering Journal, vol. 160, no. 1, pp. 1–7, 2010.
[9]  Y. Chen, A. A. Randall, and T. McCue, “The efficiency of enhanced biological phosphorus removal from real wastewater affected by different ratios of acetic to propionic acid,” Water Research, vol. 38, no. 1, pp. 27–36, 2004.
[10]  S. Jiang, Y. Chen, Q. Zhou, and G. Gu, “Biological short-chain fatty acids (scfas) production from waste-activated sludge affected by surfactant,” Water Research, vol. 41, no. 14, pp. 3112–3120, 2007.
[11]  D. S. Skalsky and G. T. Daigger, “Wastewater solids fermentation for volatile acid production and enhanced biological phosphorus removal,” Water Environment Research, vol. 67, no. 2, pp. 230–237, 1995.
[12]  S. S. Banister and W. A. Pretorius, “Optimisation of primary sludge acidogenic fermentation for biological nutrient removal,” Water Sa, vol. 24, no. 1, pp. 35–41, 1998.
[13]  Q. Yuan, R. Sparling, and J. A. Oleszkiewicz, “Waste activated sludge fermentation: effect of solids retention time and biomass concentration,” Water Research, vol. 43, no. 20, pp. 5180–5186, 2009.
[14]  V. P. Utgikar, N. Chaudhary, A. Koeniger, H. H. Tabak, J. R. Haines, and R. Govind, “Toxicity of metals and metal mixtures: analysis of concentration and time dependence for zinc and copper,” Water Research, vol. 38, no. 17, pp. 3651–3658, 2004.
[15]  E. U. Cokgor, S. Oktay, D. O. Tas, G. E. Zengin, and D. Orhon, “Influence of pH and temperature on soluble substrate generation with primary sludge fermentation,” Bioresource Technology, vol. 100, no. 1, pp. 380–386, 2009.
[16]  I. Maharaj and P. Elefsiniotis, “The role of hrt and low temperature on the acid-phase anaerobic digestion of municipal and industrial wastewaters,” Bioresource Technology, vol. 76, no. 3, pp. 191–197, 2001.
[17]  N. Ferreiro and M. Soto, “Anaerobic hydrolysis of primary sludge: influence of sludge concentration and temperature,” Water Science and Technology, vol. 47, no. 12, pp. 239–246, 2003.
[18]  P. Zhang, Y. Chen, T. Y. Huang, and Q. Zhou, “Waste activated sludge hydrolysis and short-chain fatty acids accumulation in the presence of sdbs in semi-continuous flow reactors: effect of solids retention time and temperature,” Chemical Engineering Journal, vol. 148, no. 2-3, pp. 348–353, 2009.
[19]  N. Mahmoud, G. Zeeman, H. Gijzen, and G. Lettinga, “Anaerobic stabilisation and conversion of biopolymers in primary sludge—effect of temperature and sludge retention time,” Water Research, vol. 38, no. 4, pp. 983–991, 2004.
[20]  Metcalf & Eddy, Wastewater Engineering. Treatment and Reuse, McGraw-Hill, 4th.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133