全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

基于MS-EEMD的滚动轴承微弱故障提取研究

DOI: 10.3969/j.issn.1006-1355.2018.03.029

Keywords: 振动与波,强噪声,掩膜法,总体平均经验模态分解,故障诊断

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要 在实际工况下,轴承的早期故障信号与强噪声信号相比属于微弱信号,而轴承的早期故障特征从强噪声环境中提取出来一直是故障诊断课题的一大难点。基于上述问题,提出一种基于MS(Mask Signal)和EEMD(Ensemble Empirical Mode Decomposition)方法的滚动轴承微弱故障提取方法。由于EEMD方法在噪声背景下分解出的IMF分量存在模态混叠现象,很难辨别故障频率的真伪,所以引入掩膜信号法对分解出的IMF分量进行处理,抑制虚假频率,将故障频率提取出来。通过将掩膜信号法与EEMD方法相结合的方式,对存在噪声的故障信号进行处理,提取出故障特征

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133