全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Study of Chromium Removal by the Electrodialysis of Tannery and Metal-Finishing Effluents

DOI: 10.1155/2012/179312

Full-Text   Cite this paper   Add to My Lib

Abstract:

The metal-finishing and tannery industries have been under strong pressure to replace their current wastewater treatment based on a physicochemical process. The electrodialysis process is becoming an interesting alternative for wastewater treatment. Electrodialysis is a membrane separation technique, in which ions are transported from one solution to another through ion-exchange membranes, using an electric field as the driving force. Blends of polystyrene and polyaniline were obtained in order to produce membranes for electrodialysis. The produced membranes were applied in the recovery of baths from the metal-finishing and tannery industries. The parameter for electrodialysis evaluation was the percentage of chromium extraction. The results obtained using these membranes were compared to those obtained with the commercial membrane Nafion 450. 1. Introduction Over the past few decades, there has been increased concern for the preservation of water resources. Industrial activities have led to widespread heavy metal contamination of soils and natural waters. Among the various sources of water contamination, the electroplating industry stands out as one of the most important, because it generates a considerable volume of effluents containing high concentrations of metal ions and, often, high concentrations of organic matter [1]. Another aggravating factor is that the traditional process for the treatment of these effluents, not very efficient and in some cases totally inefficient, produces dangerous solid waste (electroplating sludge), which should, therefore, be disposed of in appropriate landfills. The most commonly used technology for the treatment of effluents is the physicochemical one, followed by units of biological treatment, usually consisting of activated sludge or aerated lagoon systems [2]. These conventional treatments are generally not able to reduce all the polluting parameters. Chemical Oxygen Demand (COD), chlorides, sulfates, and chromium often do not reach the required limits [3]. In this context, the leather and metal-finishing industries urge researchers to investigate new technologies for the recovery or recycling of chemical wastewater [4]. Because of their toxicity, these effluents cannot be rejected without pretreatment in the environment [5, 6]. Membrane technology has become increasingly attractive for wastewater treatment and recycling [7]. The main advantage of a membrane process is that concentration and separation are achieved without changing the physical state or using chemical products. Because of their modularity,

References

[1]  M. Haroun, A. Idris, and S. R. Syed Omar, “A study of heavy metals and their fate in the composting of tannery sludge,” Waste Management, vol. 27, no. 11, pp. 1541–1550, 2007.
[2]  A. A. Dantas Neto, T. N. de Castro Dantas, and M. C. P. Alencar Moura, “Evaluation and optimization of chromium removal from tannery effluent by microemulsion in the Morris extractor,” Journal of Hazardous Materials, vol. 114, no. 1–3, pp. 115–122, 2004.
[3]  A. Cassano, R. Molinari, M. Romano, and E. Drioli, “Treatment of aqueous effluents of the leather industry by membrane processes: a review,” Journal of Membrane Science, vol. 181, no. 1, pp. 111–126, 2001.
[4]  V. Sivakumar, V. J. Sundar, T. Rangasamy, C. Muralidharan, and G. Swaminathan, “Management of total dissolved solids in tanning process through improved techniques,” Journal of Cleaner Production, vol. 13, no. 7, pp. 699–703, 2005.
[5]  G. Tiravanti, D. Petruzzelli, and R. Passino, “Low and non waste technologies for metals recovery by reactive polymers,” Waste Management, vol. 16, no. 7, pp. 597–605, 1996.
[6]  Z. Bajza and I. V. Vrcek, “Water quality analysis of mixtures obtained from tannery waste effluents,” Ecotoxicology and Environmental Safety, vol. 50, no. 1, pp. 15–18, 2001.
[7]  J.-H. Tay and S. Jeyaseelan, “Membrane filtration for reuse of wastewater from beverage industry,” Resources, Conservation and Recycling, vol. 15, no. 1, pp. 33–40, 1995.
[8]  A. Cassano, J. Adzet, R. Molinari, M. G. Buonomenna, J. Roig, and E. Drioli, “Membrane treatment by nanofiltration of exhausted vegetable tannin liquors from the leather industry,” Water Research, vol. 37, no. 10, pp. 2426–2434, 2003.
[9]  S. M. Kulikov, O. M. Kulikova, O. V. Scharkova, R. I. Maximovskaya, and I. V. Kozhevnikov, “Use of electromembrane technology for waste water treatment and modern acidic catalyst synthesis,” Desalination, vol. 104, no. 1-2, pp. 107–111, 1996.
[10]  X. Tongwen, “Electrodialysis processes with bipolar membranes (EDBM) in environmental protection—a review,” Resources, Conservation and Recycling, vol. 37, no. 1, pp. 1–22, 2002.
[11]  H. Strathmann, “Electrodialysis and related processes,” in Membrane Separations Technology—Principles and Applications, R. D. Noble and S. Stern, Eds., p. 213, Elsevier, New York, NY, USA, 1995.
[12]  L. Pinhedo, R. Pelegrini, R. Bertazzoli, and A. J. Motheo, “Photoelectrochemical degradation of humic acid on a (TiO2) 0.7(RuO2)0.3 dimensionally stable anode,” Applied Catalysis B, vol. 57, no. 2, pp. 75–81, 2005.
[13]  L. Szpyrkowicz, G. H. Kelsall, S. N. Kaul, and M. De Faveri, “Performance of electrochemical reactor for treatment of tannery wastewaters,” Chemical Engineering Science, vol. 56, no. 4, pp. 1579–1586, 2001.
[14]  M. A. S. Rodrigues, F. D. R. Amado, J. L. N. Xavier, K. F. Streit, A. M. Bernardes, and J. Z. Ferreira, “Application of photoelectrochemical-electrodialysis treatment for the recovery and reuse of water from tannery effluents,” Journal of Cleaner Production, vol. 16, no. 5, pp. 605–611, 2008.
[15]  F. D. R. Amado, E. Gondran, J. Z. Ferreira, M. A. S. Rodrigues, and C. A. Ferreira, “Synthesis and characterisation of high impact polystyrene/polyaniline composite membranes for electrodialysis,” Journal of Membrane Science, vol. 234, no. 1-2, pp. 139–145, 2004.
[16]  F. D. R. Amado, L. F. Rodrigues Jr., M. A. S. Rodrigues, A. M. Bernardes, J. Z. Ferreira, and C. A. Ferreira, “Development of polyurethane/polyaniline membranes for zinc recovery through electrodialysis,” Desalination, vol. 186, no. 1–3, pp. 199–206, 2005.
[17]  F. D. R. Amado, M. A. S. Rodrigues, F. D. P. Morisso, A. M. Bernardes, J. Z. Ferreira, and C. A. Ferreira, “High-impact polystyrene/polyaniline membranes for acid solution treatment by electrodialysis: preparation, evaluation, and chemical calculation,” Journal of Colloid and Interface Science, vol. 320, no. 1, pp. 52–61, 2008.
[18]  P. Sistat and G. Pourcelly, “Chronopotentiometric response of an ion-exchange membrane in the underlimiting current-range. Transport phenomena within the diffusion layers,” Journal of Membrane Science, vol. 123, no. 1, pp. 121–131, 1997.
[19]  M. Taky, G. Pourcelly, F. Lebon, and C. Gavach, “Polarization phenomena at the interfaces between an electrolyte solution and an ion exchange membrane. Part I. Ion transfer with a cation exchange membrane,” Journal of Electroanalytical Chemistry, vol. 336, no. 1-2, pp. 171–194, 1992.
[20]  R. F. D. Costa, M. A. S. Rodrigues, and J. Z. Ferreira, “Transport of trivalent and hexavalent chromium through different ion-selective membranes in acidic aqueous media,” Separation Science and Technology, vol. 33, no. 8, pp. 1135–1143, 1998.
[21]  R. Valerdi-Pérez and J. A. Ibá?ez-Mengual, “Current-voltage curves for an electrodialysis reversal pilot plant: determination of limiting currents,” Desalination, vol. 141, no. 1, pp. 23–37, 2001.
[22]  N. Pismenskaya, V. Nikonenko, B. Auclair, and G. Pourcelly, “Transport of weak-electrolyte anions through anion exchange membranes: current-voltage characteristics,” Journal of Membrane Science, vol. 189, no. 1, pp. 129–140, 2001.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133