|
中山大学学报(自然科学版) 2016
MapReduce模型下的分布式差分进化算法Keywords: 大规模优化,分布式差分进化,岛模型,精英学习 Abstract: 摘要 差分进化算法简单、高效且鲁棒性好.然而在求解大规模优化问题时,其性能随着问题维度的增加会迅速降低.针对此问题,提出一种基于MapReduce编程模型的分布式差分进化算法.算法采用改进的精英学习策略和岛模型两种机制,提高算法的收敛精度.利用MapReduce并行编程模型,构建分布式差分进化算法,并将其部署到分布式集群Hadoop上.利用13个标准测试问题进行仿真实验,实验结果表明该算法求解精度高,且具有较好的加速比和扩展性,是求解大规模优化问题的有效方法.
|