全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于SVM-RFE-BPSO算法的特征选择方法

Keywords: 支持向量机,特征选择,SVM-RFE,粒子群算法

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要 为了在特征选择中获得具有较高分类准确率的特征子集,提出了一种基于支持向量机递归特征消除法(SVM-RFE)和二进制粒子群算法(BPSO)的特征选择方法.该方法首先利用SVM-RFE快速去掉部分无关特征,初步缩减数据维数,然后以粒子群算法继续搜索最优子集,并将SVM-RFE算法得到的优良子作为粒子群算法的部分初始种群,使后续粒子群算法有一个较好的搜索起点.SVM-RFE既减少了粒子的搜索空间,又为其提供了先验知识,从而提高算法的搜索效率和识别精度.实验结果表明,该方法可以在分类准确率更高或相等的情况下得到维数更少的子集

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133