|
中山大学学报(自然科学版) 2015
基于粗糙集的多标记专属特征学习算法Abstract: 摘要 基于专属特征的多标记学习算法使用K-Means聚类算法对标记的正反样例进行聚类,进而构造每个标记的专属特征.但该方法对标记和专属特征之间的相关性缺乏理论性地探究,而且K-Means聚类方法仅仅局限于数值属性数据聚类.对此,一个基于粗糙集的多标记专属特征学习算法(R-LIFT Algorithm)被提出,其使用粗糙集的约简算法来计算每个标记的专属特征.该算法选取的专属特征是原始特征,具有直观意义,并且能够从理论上保证专属特征与标记之间具有较强的相关性.实验表明,R-LIFT算法能够有效地学习专属特征,并进一步提高多标记学习算法的性能
|