Introduction. Nephrotoxicity is one of the important side effects of anthracycline antibiotics. The aim of this study was to investigate the effects of nicotinamide (NAD), an antioxidant agent, against nephrotoxicity induced by doxorubicin (DXR). Methods. The rats were divided into control, NAD alone, doxorubicin (20?mg/kg, i.p.) and DXR plus NAD (200?mg/kg, i.p.) groups. At the end of the 10th day, kidney tissues were removed for light microscopy and analysis. The level of tissues' catalase (CAT), glutathione (GSH), glutathione peroxidase (GPx), inducible nitric oxide (iNOS) and endothelial nitric oxide (eNOS) activities were determined. Results. The activities of CAT, GPx, and GSH were decreased, and Po was increased in renal tissue of doxorubicin group compared with other groups. The tissue of the doxorubicin group showed some histopathological changes such as glomerular vacuolization and degeneration, adhesion to Bowman's capsule and thickening and untidiness of tubular and glomerular capillary basement membranes. Histopathological examination showed that NAD prevented partly DXR-induced tubular and glomerular damage. Conclusions. Pretreatment with NAD protected renal tissues against DXR-induced nephrotoxicity. Preventive effects of NAD on these renal lesions may be via its antioxidant and anti-inflammatory action. 1. Introduction Quinine-containing anthracycline antibiotic doxorubicin (DXR) has been used for the treatment of cancer since 1969. In spite of its high antitumor efficacy, DXR’s use in chemotherapy has been largely limited due to its cardiac, renal, pulmonary, testicular, and hematological toxicities [1, 2]. DXR causes an imbalance between free oxygen radicals and antioxidants. The disturbance in oxidant-antioxidant systems which has been demonstrated with lipid peroxidation (LPO) and protein oxidation results with tissue injury [3]. Although the exact mechanism of DXR-induced nephrotoxicity remains unknown, it is believed that the toxicity may be mediated through free radical formation, iron-dependent oxidative damage of biological macromolecules, membrane LPO, and protein oxidation [4]. DXR-induced changes in the kidneys of rats include increased glomerular capillary permeability and tubular atrophy [5]. Nitric oxide (NO) is a free radical gas which acts as a cytoprotective or a cytotoxic agent. NO is generated by either endothelial nitric oxide synthase (eNOS) or inducible nitric oxide synthase (iNOS) [6]. Possible role of DXR in NOS metabolism occurs via direct or indirect stimulation of NO production, and this might be a consequence
References
[1]
P. K. Singal, C. M. R. Deally, and L. E. Weinberg, “Subcellular effects of adriamycin in the heart: a concise review,” Journal of Molecular and Cellular Cardiology, vol. 19, no. 8, pp. 817–828, 1987.
[2]
E. Fadillio?lu, H. Erdo?an, S. S??üt, and I. Kuku, “Protective effects of erdosteine against doxorubicin-induced cardiomyopathy in rats,” Journal of Applied Toxicology, vol. 23, no. 1, pp. 71–74, 2003.
[3]
A. Karaman, E. Fadillioglu, E. Turkmen, E. Tas, and Z. Yilmaz, “Protective effects of leflunomide against ischemia-reperfusion injury of the rat liver,” Pediatric Surgery International, vol. 22, no. 5, pp. 428–434, 2006.
[4]
L. L. Liu, Q. X. Li, L. Xia, J. Li, and L. Shao, “Differential effects of dihydropyridine calcium antagonists on doxorubicin-induced nephrotoxicity in rats,” Toxicology, vol. 231, no. 1, pp. 81–90, 2007.
[5]
F. H. Wapstra, H. Van Goor, P. E. De Jong, G. Navis, and D. De Zeeuw, “Dose of doxorubicin determines severity of renal damage and responsiveness to ACE-inhibition in experimental nephrosis,” Journal of Pharmacological and Toxicological Methods, vol. 41, no. 2-3, pp. 69–73, 1999.
[6]
C. Nathan and Q. W. Xie, “Regulation of biosynthesis of nitric oxide,” Journal of Biological Chemistry, vol. 269, no. 19, pp. 13725–13728, 1994.
[7]
R. Radi, J. S. Beckman, K. M. Bush, and B. A. Freeman, “Peroxynitrite oxidation of sulfhydryls: the cytotoxic potential of superoxide and nitric oxide,” Journal of Biological Chemistry, vol. 266, no. 7, pp. 4244–4250, 1991.
[8]
J. C. Cendan, W. W. Souba, E. M. Copeland, and D. S. Lind, “Cytokines regulate endotoxin stimulation of endothelial cell arginine transport,” Surgery, vol. 117, no. 2, pp. 213–219, 1995.
[9]
M. Fukuzawa, J. Satoh, G. Muto et al., “Inhibitory effect of nicotinamide on in vitro and in vivo production of tumor necrosis factor-α,” Immunology Letters, vol. 59, no. 1, pp. 7–11, 1997.
[10]
L. Virág and C. Szabó, “The therapeutic potential of poly(ADP-ribose) polymerase inhibitors,” Pharmacological Reviews, vol. 54, no. 3, pp. 375–429, 2002.
[11]
J. S. Ungerstedt, M. Blomb?ck, and T. S?derstr?m, “Nicotinamide is a potent inhibitor of proinflammatory cytokines,” Clinical and Experimental Immunology, vol. 131, no. 1, pp. 48–52, 2003.
[12]
S. Cuzzocrea, D. P. Riley, A. P. Caputi, and D. Salvemini, “Antioxidant therapy: a new pharmacological approach in shock, inflammation, and ischemia/reperfusion injury,” Pharmacological Reviews, vol. 53, no. 1, pp. 135–159, 2001.
[13]
M. Yagmurca, H. Erdogan, M. Iraz, A. Songur, M. Ucar, and E. Fadillioglu, “Caffeic acid phenethyl ester as a protective agent against doxorubicin nephrotoxicity in rats,” Clinica Chimica Acta, vol. 348, no. 1-2, pp. 27–34, 2004.
[14]
E. Beutler, “Active transport of glutathione disulfide from erythrocytes,” in Functions of Glutathione: Biochemical, Physiological, Toxicological, and Clinical Aspects, A. Lorsen, Ed., p. 65, Raven Press, 1988.
[15]
H. W. Sharma and R. Narayanan, “The NF-κB transcription factor in oncogenesis,” Anticancer Research, vol. 16, no. 2, pp. 589–596, 1996.
[16]
D. E. Paglia and W. N. Valentine, “Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase,” The Journal of Laboratory and Clinical Medicine, vol. 70, no. 1, pp. 158–169, 1967.
[17]
R. L. Levine, D. Garland, C. N. Oliver et al., “Determination of carbonyl content in oxidatively modified proteins,” Methods in Enzymology, vol. 186, pp. 464–478, 1990.
[18]
L. Raij, S. Azar, and W. Keane, “Mesangial immune injury, hypertension, and progressive glomerular damage in Dahl rats,” Kidney International, vol. 26, no. 2, pp. 137–143, 1984.
[19]
S. Hertzan-Levy, R. Fish, E. Skutelsky et al., “Glomerular basement membrane anionic sites in Adriamycin nephropathy: effect of saline loading and nitric oxide modulation,” Nephron, vol. 84, no. 4, pp. 354–361, 2000.
[20]
Y. Wang, Y. P. Wang, Y. C. Tay, and D. C. H. Harris, “Progressive adriamycin nephropathy in mice: sequence of histologic and immunohistochemical events,” Kidney International, vol. 58, no. 4, pp. 1797–1804, 2000.
[21]
S. V. Shah, “Role of reactive oxygen metabolites in experimental glomerular disease,” Kidney International, vol. 35, no. 5, pp. 1093–1106, 1989.
[22]
A. Deman, B. Ceyssens, M. Pauwels et al., “Altered antioxidant defence in a mouse adriamycin model of glomerulosclerosis,” Nephrology Dialysis Transplantation, vol. 16, no. 1, pp. 147–150, 2001.
[23]
P. Deres, R. Halmosi, A. Toth et al., “Prevention of doxorubicin-induced acute cardiotoxicity by an experimental antioxidant compound,” Journal of Cardiovascular Pharmacology, vol. 45, no. 1, pp. 36–43, 2005.
[24]
T. M. Bray and C. G. Taylor, “Tissue glutathione, nutrition, and oxidative stress,” Canadian Journal of Physiology and Pharmacology, vol. 71, no. 9, pp. 746–751, 1993.
[25]
P. Montilla, I. Túnez, M. C. Mu?oz, A. López, and J. V. Soria, “Hyperlipidemic nephropathy induced by adriamycin: effect of melatonin administration,” Nephron, vol. 76, no. 3, pp. 345–350, 1997.
[26]
L. F. Fajardo, J. R. Eltringham, J. R. Stewart, and M. R. Klauber, “Adriamycin nephrotoxicity,” Laboratory Investigation, vol. 43, no. 3, pp. 242–253, 1980.
[27]
S. S. Sternberg, F. S. Philips, and A. P. Cronin, “Renal tumors and other lesions in rats following a single intravenous injection of daunomycin,” Cancer Research, vol. 32, no. 5, pp. 1029–1036, 1972.
[28]
M. K. Irmak, E. Fadillioglu, S. Sogut et al., “Effects of caffeic acid phenethyl ester and alpha-tocopherol on reperfusion injury in rat brain,” Cell Biochemistry and Function, vol. 21, no. 3, pp. 283–289, 2003.
[29]
M. M. Sayed-Aimed, “Increased plasma endothelin-1 and cardiac nitric oxide during doxorubicin-induced cardiomyopathy,” Pharmacology and Toxicology, vol. 89, no. 3, pp. 140–144, 2001.
[30]
P. Pacher, L. Liaudet, P. Bai et al., “Potent metalloporphyrin peroxynitrite decomposition catalyst protects against the development of doxorubicin-induced cardiac dysfunction,” Circulation, vol. 107, no. 6, pp. 896–904, 2003.
[31]
G. Tanr?verdi, The Analysis of the protective effects of nicotinamid's different doses on the liver damage induced carbon tetrachloride (CCl4) by light and electron microscopically, Research of dissertation, 2005.