全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于词向量的文本特征选择方法研究

Keywords: 特征选择,LDA,Word2vec,词向量,文本分类

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要 文本分类的效果依赖于文本特征选择的好坏.传统的特征选择方法,利用特征的词频或者特征与类别的关系,进行特征选择.不仅没有考虑特征的语义,而且大多只能用于标注数据集的特征选择.本文提出LDA词向量特征选择方法和Word2vec词向量特征选择方法,分别在主题空间和词语上下文关系上,学习特征的语义,进行特征选择.语料经特征选择后,利用向量空间模型进行分类.在复旦语料上的实验结果表明,基于词向量的特征选择分类效果相对于传统的特征选择得到了改善.并且,基于词向量的特征选择是一种无监督的方法,无需标注类别信息

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133