|
中山大学学报(自然科学版) 2017
使用遗传算法改进的两阶段云任务调度算法研究Abstract: 摘要 为了解决传统整数规划方法在云资源调度问题上收敛速度慢,难以适应大规模云端任务调度优化的缺陷,基于遗传算法提出了初始任务配置算法和动态任务配置算法,分别用于解决云端任务初始提交阶段和任务动态运行阶段的资源调度优化问题.在两阶段任务调度优化过程中,分别结合截止时间和资源利用率确定了有针对性的优先级队列,分别使用滑动窗口机制和在线迁移机制提升任务调度性能.通过对迭代过程和收敛速度的实验分析,本文算法能够利用遗传算法的优势解决两阶段云任务调度优化问题,并具有更快的收敛速度.
|